de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Near integrability of kink lattice with higher order interactions

Jiang, Y., Liu, J., & He, S. (2017). Near integrability of kink lattice with higher order interactions. Chinese Physics C, 41(11): 113107. doi:10.1088/1674-1137/41/11/113107.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-002B-8111-9 Versions-Permalink: http://hdl.handle.net/21.11116/0000-0000-7701-9
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1609.04546.pdf (Preprint), 204KB
Beschreibung:
File downloaded from arXiv at 2016-10-04 12:35
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
Chinese_Phys._C_41_113107.pdf (Verlagsversion), 127KB
 
Datei-Permalink:
-
Beschreibung:
-
Sichtbarkeit:
Eingeschränkt
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Jiang, Yunguo, Autor
Liu, Jiazhen, Autor
He, Song1, Autor              
Affiliations:
1Canonical and Covariant Dynamics of Quantum Gravity, AEI Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:102878              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Mathematical Physics, math-ph,High Energy Physics - Theory, hep-th,Mathematics, Mathematical Physics, math.MP,Nonlinear Sciences, Exactly Solvable and Integrable Systems, nlin.SI
 Zusammenfassung: In the paper, we make use of Manton's analytical method to investigate the force between kink and the anti-kink with large distance in $1+1$ dimensional field theory. The related potential has infinite order corrections of exponential pattern, and coefficients for each order are determined. These coefficients can also be obtained by solving the equation of the fluctuation around the vacuum. At the lowest order, the kink lattice represents the Toda lattice. With higher order correction terms, the kink lattice can represent one kind of the generic Toda lattice. With only two sites, the kink lattice is classically integrable. If the number of sites of the lattice is larger than two, the kink lattice is not integrable but a near integrable system. We take use of the Flaschka's variables to study the Lax pair of the kink lattice. These Flaschka's variables have interesting algebraic relations and the non-integrability can be manifested. We also discussed the higher Hamiltonians for the deformed open Toda lattice, which has a similar result as the ordinary deformed Toda.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-09-152017
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1609.04546
URI: http://arxiv.org/abs/1609.04546
DOI: 10.1088/1674-1137/41/11/113107
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chinese Physics C
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 41 (11) Artikelnummer: 113107 Start- / Endseite: - Identifikator: -