de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Toda chain from the kink-antikink lattice

He, S., Jiang, Y., & Liu, J. (in preparation). Toda chain from the kink-antikink lattice.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-002B-5DF1-C Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-002B-5DF2-A
Genre: Forschungspapier

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1605.06867.pdf (Preprint), 261KB
Beschreibung:
File downloaded from arXiv at 2016-09-20 12:14
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
He, Song1, Autor              
Jiang, Yunguo, Autor
Liu, Jiazhen, Autor
Affiliations:
1Canonical and Covariant Dynamics of Quantum Gravity, AEI Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:102878              

Inhalt

einblenden:
ausblenden:
Schlagwörter: High Energy Physics - Theory, hep-th,Mathematical Physics, math-ph,Mathematics, Mathematical Physics, math.MP
 Zusammenfassung: In this paper, we have studied the kink and antikink solutions in several neutral scalar models in 1+1 dimension. We follow the standard approach to write down the leading order and the second order force between long distance separated kink and antikink. The leading order force is proportional to exponential decay with respect to the distance between the two nearest kinks or antikinks. The second order force have a similar behavior with the larger decay factor, namely $3\over 2$. We make use of these properties to construct the kink lattice. The dynamics of the kink lattice with leading order force can be identified as ordinary nonperiodic Toda lattice. Also the periodic Toda lattice can be obtained when the number of kink lattice is even. The system of kink lattice with force up to the next order corresponds to a new specific deformation of Toda lattice system. There is no well study on this deformation in the integrable literatures.We found that the deformed Toda system are near integrable system, since the integrability are hindered by high order correction terms. Our work provides a effective theory for kink interactions and a new near or quasi integrable model.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-05-222016-08-01
 Publikationsstatus: Keine Angabe
 Seiten: 20 pages no figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1605.06867
URI: http://arxiv.org/abs/1605.06867
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: