de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular

Amaro-Seoane, P., & Chen, X. (2016). Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular. Monthly Notices of the Royal Astronomical Society, 458(3), 3075-3082. doi:10.1093/mnras/stw503.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002A-3851-6 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002A-3852-4
Genre: Journal Article

Files

show Files
hide Files
:
1512.04897.pdf (Preprint), 4MB
Description:
File downloaded from arXiv at 2016-04-19 09:55
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
MNRAS-2016-Amaro-Seoane-3075-82.pdf (Any fulltext), 2MB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Amaro-Seoane, Pau1, Author              
Chen, Xian, Author
Affiliations:
1Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:1933290              

Content

show
hide
Free keywords: Astrophysics, Cosmology and Extragalactic Astrophysics, astro-ph.CO, Astrophysics, High Energy Astrophysical Phenomena, astro-ph.HE,General Relativity and Quantum Cosmology, gr-qc
 Abstract: Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the search in the data stream. To reduce the number of templates to develop, one must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic) observations or theoretical modeling. In this work we show that "hyperstellar" black holes (HSBs) with masses $30 \lesssim M_{\rm BH}/M_{\odot} \lesssim 100$, i.e black holes significantly larger than the nominal $10\,M_{\odot}$, will have an associated low value for the spin, i.e. $a<0.5$. We prove that this is true regardless of the formation channel, and that when two HSBs build a binary, each of the spin magnitudes is also low, and the binary members have similar masses. We also address the distribution of the eccentricities of HSB binaries in dense stellar systems using a large suite of three-body scattering experiments that include binary-single interactions and long-lived hierarchical systems with a highly accurate integrator, including relativistic corrections up to ${\cal O}(1/c^5)$. We find that most sources in the detector band will have nearly zero eccentricities. This correlation between large, similar masses, low spin and low eccentricity will help to accelerate the searches for gravitational-wave signals.

Details

show
hide
Language(s):
 Dates: 2015-12-152016-02-292016
 Publication Status: Published in print
 Pages: Accepted for publication MNRAS
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1512.04897
DOI: 10.1093/mnras/stw503
URI: http://arxiv.org/abs/1512.04897
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Monthly Notices of the Royal Astronomical Society
  Other : Mon. Not. R. Astron. Soc.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Oxford University Press
Pages: - Volume / Issue: 458 (3) Sequence Number: - Start / End Page: 3075 - 3082 Identifier: ISSN: 1365-8711
CoNE: http://pubman.mpdl.mpg.de/cone/journals/resource/1000000000024150