English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Quality of graphene on sapphire: Long-range order from helium diffraction versus lattice defects from Raman spectroscopy.

Anemone, G., Climent-Pascual, E., Yu, H. K., Al Taleb, A., Jimenez-Villacorta, F., Prieto, C., et al. (2016). Quality of graphene on sapphire: Long-range order from helium diffraction versus lattice defects from Raman spectroscopy. RSC Advances, 6(25), 21235-21245. doi:10.1039/C5RA27452D.

Item is

Files

show Files
hide Files
:
2259752.pdf (Publisher version), 2MB
Name:
2259752.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
2259752_Suppl.pdf (Supplementary material), 2MB
Name:
2259752_Suppl.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Anemone, G., Author
Climent-Pascual, E., Author
Yu, H. K.1, Author           
Al Taleb, A., Author
Jimenez-Villacorta, F., Author
Prieto, C., Author
Wodtke, A. M.1, Author           
De Andres, A., Author
Farias, D., Author
Affiliations:
1Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society, ou_578600              

Content

show
hide
Free keywords: -
 Abstract: We report a new method to produce high-quality, transparent graphene/sapphire samples, using Cu as a catalyst. The starting point is a high-quality graphene layer prepared by CVD on Cu(111)/Al2O3. Graphene on sapphire is obtained in situ by evaporation of the Cu film in UHV. He-diffraction, atomic force microscopy (AFM), Raman spectroscopy and optical transmission have been used to assess the quality of graphene in a metal free area. We used helium atom scattering as a sensitive probe of the crystallinity of the graphene on sapphire. The observation of high reflectivity and clear diffraction peaks demonstrates the presence of flat and homogeneous graphene domains over lateral scales of microns, consistent with the AFM results. Surprisingly, putting graphene on sapphire improves the quality of the He-diffraction spectra. Graphene forms a moire pattern with a (11 x 11) periodicity, aligned with the (1 x 1) sapphire unit cell. The lattice constant of graphene on sapphire is a = (2.44 +/- 0.02) angstrom. The phonon dispersion of the graphene flexural mode has been measured. This allowed the determination of the bending rigidity k = 0.61 +/- 0.15 eV, and the graphene-sapphire coupling strength g = (5.8 +/- 0.4) x 10(19) N m(-3). The uniformity of the graphene has also been investigated by Raman mapping. Judging by the ratio of the 2D to G peaks, the quality of the graphene is not degraded by Cu removal. The high transparency (80%) measured in the visible range makes this system suitable for many applications that require hybrid properties commonly associated with metals (conductivity) and insulators (transparency). Our study shows that He-diffraction and Raman provide crucial information on quite different, complementary aspects of the same samples.

Details

show
hide
Language(s): eng - English
 Dates: 2016-02-12
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1039/C5RA27452D
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: RSC Advances
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 6 (25) Sequence Number: - Start / End Page: 21235 - 21245 Identifier: -