Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Heusler compounds Go Nano

Meyer, J., Teichert, N., Auge, A., Wang, C., Hütten, A., & Felser, C. (2016). Heusler compounds Go Nano. In C. Felser (Ed.), Heusler Alloys (pp. 111-132). Cham: Springer.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Meyer, Judith1, Autor
Teichert, Niclas1, Autor
Auge, Alexander1, Autor
Wang, Changhai2, Autor           
Hütten, Andreas1, Autor
Felser, Claudia3, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863425              
3Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: This chapter is addressing the physical impact of ferromagnetic Heusler entities when approaching the nanoscale, e.g. as nanoparticles or as very small grains in magnetic shape Heusler alloys, on resulting magnetic as well as microstructural properties. Based on the soft magnetic behavior of Co2FeGa and Co2FeSi as two representatives of the full Heusler family their superparamagnetic potential is projected to applications in biotechnology. These applications can now be pictured due to the progress which has been made in synthesizing Heusler nanoparticles. Taken Co2FeGa as a candidate the chemical preparation avenue to achieve nanoparticles with reliable physical properties is demonstrated leading to a nanoparticular GMReffect. It is shown that magnetic nanoparticles can be embedded in agarose as a biogel when employing external magnetic fields so as to configure the nanoparticle arrangements for optimizing the GMR-effect. Possible consequences in case of a nanoparticular TMR-effect are pictured. The very small grain size in magnetic shape Heusler alloys is determining the austenite-martensite transformation in ultra-thin films which might play a major role for spintronic applications also bridging two research field in addition. The principle microstructural influences on the austenitemartensite transformation in thin films are discussed in terms of epitaxial growth, phase compatibility, crystal quality and size scale effects. Thereafter, details concerning the martensitic transformation in a film thickness range from 10 to 100nm are discussed for two off-stoichiometric NiMnSn Heusler compositions. © Springer International Publishing Switzerland 2016.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-01-14
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1007/978-3-319-21449-8_5
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Heusler Alloys
Genre der Quelle: Buch
 Urheber:
Felser, Claudia1, Herausgeber           
Affiliations:
1 Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429            
Ort, Verlag, Ausgabe: Cham : Springer
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 111 - 132 Identifikator: ISBN: 978-3-319-21448-1

Quelle 2

einblenden:
ausblenden:
Titel: Springer Series in Materials Science
Genre der Quelle: Reihe
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 222 Artikelnummer: - Start- / Endseite: - Identifikator: -