de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Sharp asymptotics for Einstein-lambda-dust flows

Friedrich, H. (2017). Sharp asymptotics for Einstein-lambda-dust flows. Communications in Mathematical Physics, 350(2), 803-844. doi:10.1007/s00220-016-2716-6.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0029-AAC0-4 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002E-2FC3-A
Genre: Journal Article

Files

show Files
hide Files
:
1601.04506.pdf (Preprint), 413KB
Description:
File downloaded from arXiv at 2016-02-11 09:34
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
CMP016-2716-6.pdf (Publisher version), 572KB
Description:
Open Access
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
The Author

Locators

show

Creators

show
hide
 Creators:
Friedrich, Helmut1, Author              
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24012              

Content

show
hide
Free keywords: General Relativity and Quantum Cosmology, gr-qc,
 Abstract: We consider the Einstein-dust equations with positive cosmological constant $\lambda$ on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold $S$. It is shown that the set of standard Cauchy data for the Einstein-$\lambda$-dust equations on $S$ contains an open (in terms of suitable Sobolev norms) subset of data that develop into solutions which admit at future time-like infinity a space-like conformal boundary ${\cal J}^+$ that is $C^{\infty}$ if the data are of class $C^{\infty}$ and of correspondingly lower smoothness otherwise. As a particular case follows a strong stability result for FLRW solutions. The solutions can conveniently be characterized in terms of their asymptotic end data induced on ${\cal J}^+$, only a linear equation must be solved to construct such data. In the case where the energy density $\hat{\rho}$ is everywhere positive such data can be constructed without solving any differential equation at all.

Details

show
hide
Language(s):
 Dates: 2016-01-1820162017
 Publication Status: Published in print
 Pages: 44 pages
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: arXiv: 1601.04506
URI: http://arxiv.org/abs/1601.04506
DOI: 10.1007/s00220-016-2716-6
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Communications in Mathematical Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Heidelberg : Springer-Verlag Heidelberg
Pages: - Volume / Issue: 350 (2) Sequence Number: - Start / End Page: 803 - 844 Identifier: ISSN: 0010-3616
CoNE: http://pubman.mpdl.mpg.de/cone/journals/resource/954925392313