de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  On the geometry and topology of initial data sets with horizons

Andersson, L., Dahl, M., Galloway, G. J., & Pollack, D. (submitted). On the geometry and topology of initial data sets with horizons.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0028-FE79-9 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0029-0000-A
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1508.01896.pdf (Preprint), 532KB
Beschreibung:
File downloaded from arXiv at 2015-11-11 12:00
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Andersson, Lars1, Autor              
Dahl, Mattias, Autor
Galloway, Gregory J., Autor
Pollack, Daniel, Autor
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24012              

Inhalt

einblenden:
ausblenden:
Schlagwörter: General Relativity and Quantum Cosmology, gr-qc,Mathematics, Differential Geometry, math.DG
 Zusammenfassung: We study the relationship between initial data sets with horizons and the existence of metrics of positive scalar curvature. We define a Cauchy Domain of Outer Communications (CDOC) to be an asymptotically flat initial set $(M, g, K)$ such that the boundary $\partial M$ of $M$ is a collection of Marginally Outer (or Inner) Trapped Surfaces (MOTSs and/or MITSs) and such that $M\setminus \partial M$ contains no MOTSs or MITSs. This definition is meant to capture, on the level of the initial data sets, the well known notion of the domain of outer communications (DOC) as the region of spacetime outside of all the black holes (and white holes). Our main theorem establishes that in dimensions $3\leq n \leq 7$, a CDOC which satisfies the dominant energy condition and has a strictly stable boundary has a positive scalar curvature metric which smoothly compactifies the asymptotically flat end and is a Riemannian product metric near the boundary where the cross sectional metric is conformal to a small perturbation of the initial metric on the boundary $\partial M$ induced by $g$. This result may be viewed as a generalization of Galloway and Schoen's higher dimensional black hole topology theorem to the exterior of the horizon. We also show how this result leads to a number of topological restrictions on the CDOC, which allows one to also view this as an extension of the initial data topological censorship theorem, established by Eichmair, Galloway, and Pollack in dimension $n=3$, to higher dimensions.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2015-08-082015
 Publikationsstatus: Eingereicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1508.01896
URI: http://arxiv.org/abs/1508.01896
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of differential geometry
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bethlehem, Pa.
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: - Identifikator: -