English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Accessing the fundamentals of magnetotransport in metals with terahertz probes

Jin, Z., Tkach, A., Casper, F., Spetter, V., Grimm, H., Thomas, A., et al. (2015). Accessing the fundamentals of magnetotransport in metals with terahertz probes. Nature Physics, 11(9), 761-766. doi:doi:10.1038/nphys3384.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Jin, Zuanming1, Author
Tkach, Alexander2, 3, Author
Casper, Frederick2, Author
Spetter, Victor4, Author
Grimm, Hubert4, Author
Thomas, Andy2, 5, Author
Kampfrath, Tobias6, Author           
Bonn, Mischa1, Author
Kläui, Mathias2, Author
Turchinovich, Dmitry1, Author
Affiliations:
1MPI for Polymer Research, Max Planck Society, ou_1309545              
2Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany, ou_persistent22              
3Department of Materials and Ceramic Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal, ou_persistent22              
4Sensitec GmbH, Hechtsheimer Str. 2, 55131 Mainz, Germany, ou_persistent22              
5Fakultät für Physik, Universität Bielefeld, 33615 Bielefeld, Germany, ou_persistent22              
6Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              

Content

show
hide
Free keywords: -
 Abstract: Spin-dependent conduction in metals underlies all modern magnetic memory technologies, such as giant magnetoresistance (GMR). The charge current in ferromagnetic transition metals is carried by two non-mixing populations of sp-band Fermi-level electrons: one of majority-spin and one of minority-spin. These electrons experience spin-dependent momentum scattering with localized electrons, which originate from the spin-split d-band. The direct observation of magnetotransport under such fundamental conditions, however, requires magnetotransport measurements on the same timescale as the electron momentum scattering, which takes place in the sub-100 fs regime. Using terahertz electromagnetic probes, we directly observe the magnetotransport in a metallic system under the fundamental conditions, and determine the spin-dependent densities and momentum scattering times of conduction electrons. We show that traditional measurements significantly underestimate the spin asymmetry in electron scattering, a key parameter responsible for effects such as GMR. Furthermore, we demonstrate the possibility of magnetic modulation of terahertz waves, along with heat- and contact-free GMR readout using ultrafast terahertz signals.

Details

show
hide
Language(s): eng - English
 Dates: 2014-12-122015-06-012015-07-062015-09
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: doi:10.1038/nphys3384
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : LIGHTER - "Light and matter on critical timescales, studied by nonlinear terahertz spectroscopy"
Grant ID : 334324
Funding program : Funding Programme 7 (FP7)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Nature Physics
  Other : Nat. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : Nature Pub. Group
Pages: 6 Volume / Issue: 11 (9) Sequence Number: - Start / End Page: 761 - 766 Identifier: ISSN: 1745-2473
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000025850