de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Parametric Representation of Rank d Tensorial Group Field Theory: Abelian Models with Kinetic Term sum_s|p_s| + \mu

Ben Geloun, J., & Toriumi, R. (2015). Parametric Representation of Rank d Tensorial Group Field Theory: Abelian Models with Kinetic Term sum_s|p_s| + \mu. Journal of Mathematical Physics, 56: 093503. doi:10.1063/1.4929771.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0024-65C2-B Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0029-457B-3
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1409.0398.pdf (Preprint), 2MB
Beschreibung:
File downloaded from arXiv at 2015-01-07 13:08
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
:
10.1063_1.4929771.pdf (beliebiger Volltext), 2MB
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ben Geloun, Joseph1, Autor              
Toriumi, Reiko, Autor
Affiliations:
1Quantum Gravity and Unified Theorie, escidoc:24014              

Inhalt

einblenden:
ausblenden:
Schlagwörter: High Energy Physics - Theory, hep-th,General Relativity and Quantum Cosmology, gr-qc,Mathematical Physics, math-ph,Mathematics, Mathematical Physics, math.MP
 Zusammenfassung: We consider the parametric representation of the amplitudes of Abelian models in the so-called framework of rank $d$ Tensorial Group Field Theory. These models are called Abelian because their fields live on $U(1)^D$. We concentrate on the case when these models are endowed with particular kinetic terms involving a linear power in momenta. New dimensional regularization and renormalization schemes are introduced for particular models in this class: a rank 3 tensor model, an infinite tower of matrix models $\phi^{2n}$ over $U(1)$, and a matrix model over $U(1)^2$. For all divergent amplitudes, we identify a domain of meromorphicity in a strip determined by the real part of the group dimension $D$. From this point, the ordinary subtraction program is applied and leads to convergent and analytic renormalized integrals. Furthermore, we identify and study in depth the Symanzik polynomials provided by the parametric amplitudes of generic rank $d$ Abelian models. We find that these polynomials do not satisfy the ordinary Tutte's rules (contraction/deletion). By scrutinizing the "face"-structure of these polynomials, we find a generalized polynomial which turns out to be stable only under contraction.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2014-09-0120152015
 Publikationsstatus: Im Druck publiziert
 Seiten: 69 pages, 35 figures
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1409.0398
DOI: 10.1063/1.4929771
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Mathematical Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. [etc.] : American Institute of Physics
Seiten: - Band / Heft: 56 Artikelnummer: 093503 Start- / Endseite: - Identifikator: ISSN: 0022-2488
CoNE: http://pubman.mpdl.mpg.de/cone/journals/resource/954922836227