English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Fluorescence Microscopic Comparison of the Binding of Phosphodiester and Phosphorothioate (Antisense) Oligodeoxyribonucleotides to Subcellular Structures, Including Intermediate Filaments, the Endoplasmic Reticulum, and the Nuclear Interio

Shoeman, R. L., Hartig, R., Huang, Y., Grueb, S., & Traub, P. (1997). Fluorescence Microscopic Comparison of the Binding of Phosphodiester and Phosphorothioate (Antisense) Oligodeoxyribonucleotides to Subcellular Structures, Including Intermediate Filaments, the Endoplasmic Reticulum, and the Nuclear Interio. Antisense and Nucleic Acid Drug Development, 7(4), 291-308. doi:10.1089/oli.1.1997.7.291.

Item is

Files

show Files
hide Files
:
AntisenseNuclAcidDrugDev_7_1997_291.pdf (Any fulltext), 5MB
 
File Permalink:
-
Name:
AntisenseNuclAcidDrugDev_7_1997_291.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Shoeman, Robert L.1, 2, 3, Author           
Hartig, Roland, Author
Huang, Yuping, Author
Grueb, Sabine, Author
Traub, Peter, Author
Affiliations:
1Coherent diffractive imaging, Max Planck Institute for Medical Research, Max Planck Society, ou_1497692              
2Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society, ou_1497700              
3Analytical Protein Biochemistry, Max Planck Institute for Medical Research, Max Planck Society, ou_1497690              

Content

show
hide
Free keywords: -
 Abstract: To detect potential intracellular binding sites for antisense oligodeoxyribonucleotides (ODN), 3‵-fluorescencetagged phosphodiester (P) and phosphorothioate (S) analogs of a series of model and vimentin and actin antisense ODN were applied to digitonin-permeabilized fibroblast and epithelial PtK2 cells. Fluorescence microscopy revealed binding of the ODN to intermediate filaments (IFs) with a preference for cytokeratin IFs, cytoplasmic membranes (endoplasmic reticulum), and, above all, the nuclear interior. The affinity of the ODN for these cellular substructures was dependent on their base composition, and the S-ODN were by far superior to the corresponding P-ODN in binding activity. Fluorescence polarization measurements of the interaction of ODN with purified IF proteins in vitro confirmed the differential, high-affinity binding of S-ODN to IFs. In permeabilized cells, the ODN readily migrated into the nucleus where, at ambient temperature, preferentially the S-ODN gave rise to a multitude of large, irregular aggregates. Nuclear uptake of the ODN was considerably and differentially inhibited by wheat germ agglutinin. High-affinity S-ODN, but not P-ODN, additionally reacted with a structure presumably identical with the nuclear lamina. Simultaneously, they cause decompaction of chromatin, whereby the S-ODN aggregates appeared as compact inclusions in homogeneously dispersed chromatin. After microinjection of S-ODN into intact cells, these effects were not observed, although the nucleic acids rapidly moved into the nucleus and condensed into a large number of well-defined, spherical speckles or longitudinal rodlets. The methylphosphonate analogs of some of the ODN used exhibited only extremely low affinities for intracellular constituents. These results show that excess amounts of S-ODN saturate a host of both low-affinity and high-affinity binding sites on cellular substructures, whereas limited quantities as used for microinjection recognize only the high-affinity binding sites. The results support the notion that the nonsequence-specific, often toxic effects of antisense S-ODN result from their strong binding to cellular components and substructures involved in replicational, transcriptional, and translational processes. On the other hand, the association of the ODN with membranes and cytoskeletal and karyoskeletal elements may serve to optimize their sequence-specific interaction with their intended target sites and also increase their cellular retention potential. These cellular structures would thus fulfill a depot function.

Details

show
hide
Language(s): eng - English
 Dates: 1997-04-031997-04-182009-01-291997-08
 Publication Status: Issued
 Pages: 18
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Antisense and Nucleic Acid Drug Development
  Alternative Title : Antisense Nucl. Acid Drug Dev.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Larchmont, NY : Liebert
Pages: - Volume / Issue: 7 (4) Sequence Number: - Start / End Page: 291 - 308 Identifier: ISSN: 1087-2906