Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Rational design of new materials for spintronics: Co2FeZ (Z = Al, Ga, Si, Ge)

Balke, B., Wurmehl, S., Fecher, G. H., Felser, C., & Kübler, J. (2008). Rational design of new materials for spintronics: Co2FeZ (Z = Al, Ga, Si, Ge). Science and Technology of Advanced Materials, 9(1): 014102, pp. 1-13. doi:10.1088/1468-6996/9/1/014102.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Balke, Benjamin1, Autor
Wurmehl, Sabine1, Autor
Fecher, Gerhard H., Autor
Felser, Claudia2, Autor           
Kübler, Jürgen1, Autor
Affiliations:
1external, ou_persistent22              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Spintronic is a multidisciplinary field and a new research area. New materials must be found for satisfying the different types of demands. The search for stable half-metallic ferromagnets and ferromagnetic semiconductors with Curie temperatures higher than room temperature is still a challenge for solid state scientists. A general understanding of how structures are related to properties is a necessary prerequisite for material design. Computational simulations are an important tool for a rational design of new materials. The new developments in this new field are reported from the point of view of material scientists. The development of magnetic Heusler compounds specifically designed as material for spintronic applications has made tremendous progress in the very recent past. Heusler compounds can be made as half-metals, showing a high spin polarization of the conduction electrons of up to 100% in magnetic tunnel junctions. High Curie temperatures were found in Co-2-based Heusler compounds with values up to 1120K in Co2FeSi. The latest results at the time of writing are a tunnelling magnet resistance (TMR) device made from the Co2FeAl0.5Si0.5 Heusler compound and working at room temperature with a (TMR) effect higher than 200%. Good interfaces and a well-ordered compound are the precondition to realize the predicted half-metallic properties. The series Co2FeAl1-xSix is found to exhibit half-metallic ferromagnetism over a broad range, and it is shown that electron doping stabilizes the gap in the minority states for x = 0.5. This might be a reason for the exceptional temperature behaviour of Co2FeAl0.5Si0.5 TMR devices. Using x-ray diffraction (XRD), it was shown conclusively that Co2FeAl crystallizes in the B2 structure whereas Co2FeSi crystallizes in the L2(1) structure. For the compounds Co2FeGa or Co2FeGe, with Curie temperatures expected higher than 1000 K, the standard XRD technique using laboratory sources cannot be used to easily distinguish between the two structures. For this reason, the EXAFS technique was used to elucidate the structure of these two compounds. Analysis of the data indicated that both compounds crystallize in the L2(1) structure which makes these two compounds suitable new candidates as materials in magnetic tunnel junctions.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2008-01-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000257128300012
DOI: 10.1088/1468-6996/9/1/014102
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science and Technology of Advanced Materials
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Kidlington, Oxford : Elsevier
Seiten: - Band / Heft: 9 (1) Artikelnummer: 014102 Start- / Endseite: 1 - 13 Identifikator: ISSN: 1468-6996
CoNE: https://pure.mpg.de/cone/journals/resource/974392605051