English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Structure and function of the initially transcribing RNA polymerase II–TFIIB complex

Sainsbury, S., Niesser, J., & Cramer, P. (2013). Structure and function of the initially transcribing RNA polymerase II–TFIIB complex. Nature, 493(7432), 437-440. doi:10.1038/nature11715.

Item is

Files

show Files
hide Files
:
1922725.pdf (Publisher version), 2MB
Name:
1922725.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-
:
1922725-Suppl.pdf (Supplementary material), 6MB
Name:
1922725-Suppl.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Sainsbury, S., Author
Niesser, J., Author
Cramer, P.1, Author           
Affiliations:
1Department of Molecular Biology, MPI for Biophysical Chemistry, Max Planck Society, ou_1863498              

Content

show
hide
Free keywords: X-ray crystallography, Enzyme mechanisms, Transcription
 Abstract: The general transcription factor (TF) IIB is required for RNA polymerase (Pol) II initiation and extends with its B-reader element into the Pol II active centre cleft. Low-resolution structures of the Pol II– TFIIB complex1,2 indicated how TFIIB functions in DNA recruitment, but they lacked nucleic acids and half of the B-reader, leaving other TFIIB functions3,4 enigmatic. Here we report crystal structures of the Pol II–TFIIB complex from the yeast Saccharomyces cerevisiae at 3.4A˚ resolution and of an initially transcribing complex that additionally contains theDNAtemplate and a 6-nucleotide RNAproduct.The structures reveal the entire B-reader and protein– nucleic acid interactions, and together with functional data lead to a more complete understanding of transcription initiation. TFIIB partially closes the polymerase cleft to position DNA and assist in its opening. The B-reader does not reach the active site but binds the DNA template strand upstream to assist in the recognition of the initiator sequence and in positioning the transcription start site. TFIIB rearranges active-site residues, induces binding of the catalytic metal ion B, and stimulates initial RNA synthesis allosterically. TFIIB then prevents the emergingDNA–RNAhybrid duplex from tilting, which would impair RNA synthesis. When the RNA grows beyond 6 nucleotides, it is separated from DNA and is directed to its exit tunnel by the B-reader loop. Once the RNA grows to 12–13 nucleotides, it clashes with TFIIB, triggering TFIIB displacement and elongation complex formation. Similar mechanisms may underlie all cellular transcription because all eukaryotic and archaeal RNA polymerases use TFIIB-like factors5, and the bacterial initiation factor sigma has TFIIB-like topology1,2 and contains the loop region 3.2 that resembles the B-reader loop in location, charge and function6–8. TFIIB and its counterparts may thus account for the two fundamental properties that distinguish RNA from DNA polymerases: primer-independent chain initiation and product separation from the template.

Details

show
hide
Language(s): eng - English
 Dates: 2013-01-17
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1038/nature11715
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nature
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 493 (7432) Sequence Number: - Start / End Page: 437 - 440 Identifier: -