Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels

Hlushkou, D., Kandhai, D., & Tallarek, U. (2004). Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels. International Journal for Numerical Methods in Fluids, 46(5), 507-532. doi:10.1002/fld.765.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel
Alternativer Titel : Int. J. Numer. Meth. Fluids

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hlushkou, D.1, Autor           
Kandhai, D.2, Autor
Tallarek, U.2, Autor
Affiliations:
1Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              
2Delft University fo Technology, Kramers Laboratorium voor Fysische Technologie, BW Delft, The Netherlands, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: lattice-Boltzmann method; finite-difference method; porous media; microfluidics; electroosmotic flow; surface charge distribution
 Zusammenfassung: In this article we are concerned with an extension of the lattice-Boltzmann method for the numerical simulation of three-dimensional electroosmotic flow problems in porous media. Our description is evaluated using simple geometries as those encountered in open-channel microfluidic devices. In particular, we consider electroosmosis in straight cylindrical capillaries with a (non)uniform zeta-potential distribution for ratios of the capillary inner radius to the thickness of the electrical double layer from 10 to 100. The general case of hetergeneous zeta-potential distributions at the surface of a capillary requires solution of the following coupled equations in three dimensions: Navier-Stokes equation for liquid flow, Poisson equation for electrical potential distribution, and the Nernst-Planck equation for distribution of ionic species. The hydrodynamic problem has been treated with high efficiency by code parallelization through the lattice-Boltzmann method. For validation velocity fields were simulated in several microcapillary systems and good agreement with results predicted either theoretically or obtained by alternative numerical methods could be established. Results are also discussed with respect to the use of a slip boundary condition for the velocity field at the surface. Copyright © 2004 John Wiley & Sons, Ltd. [accessed 2013 November 27th]

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2004
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 238035
DOI: 10.1002/fld.765
Anderer: 57/04
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: International Journal for Numerical Methods in Fluids
  Andere : Int. J. Numer. Methods Fluids
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Chichester : Wiley
Seiten: - Band / Heft: 46 (5) Artikelnummer: - Start- / Endseite: 507 - 532 Identifikator: ISSN: 0271-2091
CoNE: https://pure.mpg.de/cone/journals/resource/954925502196