Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Numerical and analytical investigation of barium sulphate crystallization

Öncül, A. A., Sundmacher, K., Seidel-Morgenstern, A., & Thevenin, D. (2006). Numerical and analytical investigation of barium sulphate crystallization. Chemical Engineering Science, 61(2), 652-664. doi:10.1016/j.ces.2005.07.037.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Öncül, A. A.1, Autor
Sundmacher, Kai1, 2, Autor           
Seidel-Morgenstern, A.1, 3, Autor           
Thevenin, D.1, Autor
Affiliations:
1Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              
2Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              
3Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Numerical analysis; Crystallization; Barium sulphate; Population balance; Moment method; CSD
 Zusammenfassung: This paper considers the crystallization of BaSO4 in turbulent flows using numerical simulations, since many questions are still open for this important process. The corresponding calculations are performed both for steady state and for time-dependent conditions, for homogeneous as well as for mixing-controlled flows. The employed kinetic model has been coupled with a standard method of moments using the first four moments in order to compute the evolution of the crystal population. Assuming a prescribed function shape, for example a Gaussian, this further allows to depict the crystal size distribution (CSD) as a function of time or of the spatial position in the crystallization reactor. Time-dependent simulations in a homogeneous flow are first validated by comparison with the exact solution of the corresponding full reaction kinetic model. After this successful validation, steady-state calculations are performed for a coaxial pipe mixer using two different reference problems available in the literature. The quality of the employed numerical model is first checked by comparing with experimental results from Marchisio et al. (American Institute of Chemical Engineers Journal 48, 2039–2050). Further simulations are then carried out for a second mixing problem (configuration of Wei and Garside (Chemical Engineering Research & Design 75(A2), 219–227)), for which numerical results are available. For this second case, since the numerical methods and physical models used in the present work have been noticeably improved compared to the original publication (finer grid, higher level of convergence, more accurate computation of the activity coefficient…), considerable differences in the findings are observed. Nevertheless, the coupling of a Computational Fluid Dynamics code (here Fluent 6.1) with the standard method of moments using User-Defined Functions and Scalars, followed by an extensive post-processing of the results leads to a detailed prediction of the obtained CSD for crystallization processes in non-homogeneous turbulent flows. © 2006 Elsevier B.V. All rights reserved [accessed 2013 November 27th]

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2006
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 233589
Anderer: 9/06
DOI: 10.1016/j.ces.2005.07.037
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Chemical Engineering Science
  Andere : Chem. Eng. Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Pergamon
Seiten: - Band / Heft: 61 (2) Artikelnummer: - Start- / Endseite: 652 - 664 Identifikator: ISSN: 0009-2509
CoNE: https://pure.mpg.de/cone/journals/resource/954925389239