English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  From random sphere packings to regular pillar arrays: Effect of the macroscopic confinement on hydrodynamic dispersion

Daneyko, A., Khirevich, S., Hoeltzel, A., Seidel-Morgenstern, A., & Tallarek, U. (2011). From random sphere packings to regular pillar arrays: Effect of the macroscopic confinement on hydrodynamic dispersion. Journal of Chromatography A, 1218(45), 8231-8248. doi:10.1016/j.chroma.2011.09.039.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Daneyko, A.1, Author
Khirevich, S.1, Author
Hoeltzel, A.1, Author
Seidel-Morgenstern, A.2, 3, Author           
Tallarek, U.1, Author
Affiliations:
1Philipps-Universität Marburg,Department of Chemistry, Marburg, Germany, ou_persistent22              
2Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              
3Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Content

show
hide
Free keywords: Ordered pillar arrays; Random sphere packings; Packing disorder; Wall effects; Eddy dispersion; High-performance computing
 Abstract: Flow and mass transport in bulk and confined chromatographic supports comprising random packings of solid, spherical particles and hexagonal arrays of solid cylinders (regular pillar arrays) are studied over a wide flow velocity range by a numerical analysis scheme, which includes packing generation by a modified Jodrey-Tory algorithm, three-dimensional flow field calculations by the lattice-Boltzmann method, and modeling of advective-diffusive mass transport by a random-walk particle-tracking technique. We demonstrate the impact of the confinement and its cross-sectional geometry (circular, quadratic, semicircular) on transient and asymptotic transverse and longitudinal dispersion in random sphere packings, and also address the influence of protocol-dependent packing disorder and the particle-aspect ratio. Plate height curves are analyzed with the Giddings equation to quantify the transcolumn contribution to eddy dispersion. Confined packings are compared with confined arrays under the condition of identical bed porosity, conduit cross-sectional area, and laterally fully equilibrated geometrical wall and corner effects on dispersion. Fluid dispersion in a regular pillar array is stronger affected by the macroscopic confinement and does not resemble eddy dispersion in random sphere packings, because the regular microstructure cannot function as a mechanical mixer like the random morphology. Giddings’ coupling theory fails to preserve the nature of transverse dispersion behind the arrays’ plate height curves, which approach a linear velocity-dependence as transverse dispersion becomes velocity-independent. Upon confinement this pseudo-diffusive behavior can outweigh the performance advantage of the regular over the random morphology. Copyright © 2011 Published by Elsevier B.V. [accessed Nobember 16th 2011]

Details

show
hide
Language(s): eng - English
 Dates: 2011
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 572130
DOI: 10.1016/j.chroma.2011.09.039
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Chromatography A
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Elsevier
Pages: - Volume / Issue: 1218 (45) Sequence Number: - Start / End Page: 8231 - 8248 Identifier: ISSN: 0021-9673
CoNE: https://pure.mpg.de/cone/journals/resource/954925527837_1