English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Hybrid Processes to Separate Enantiomers

Seidel-Morgenstern, A., & Lorenz, H. (2012). Hybrid Processes to Separate Enantiomers. Talk presented at 2012 AIChE Annual Meeting. Pittsburgh, PA, USA. 2012-10-28 - 2012-11-02.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Seidel-Morgenstern, A.1, 2, Author           
Lorenz, H.1, Author           
Affiliations:
1Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738150              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              

Content

show
hide
Free keywords: -
 Abstract: Enantiomers are pairwise occurring molecules, which are non-superimposable mirror images one of the other. Due to homochirality of life, there is a large interest and need to produce pure enantiomers in the pharmaceutical, fine chemical, food and agrochemical industries. Their provision is a challenging task since standard non-selective chemical synthesis always leads to racemic (50:50) mixtures and there is tremendous interest in the mentioned industries to develop innovative methods allowing for a faster access to pure enantiomers. The first essential information for a rational selection of appropriate separation processes is the identification of the type of phase diagram for the specific chiral compound of interest. In the simplest but rare case that the chiral compound crystallizes as a conglomerate, it is most attractive to apply directly preferential crystallization [1]. However, more frequently racemic compounds are formed during crystallization from racemic feed mixtures. In these cases an initial enrichment is required prior to crystallizing a pure enantiomer. This enrichment might be provided by a partially selective synthesis or can be generated by an initial alternative separation process. The presentation will summarize results of several case studies devoted to combine membrane separation [2] and preparative chromatography [3, 4] with subsequent enantioselective crystallization. The specific degree of enrichment required for successful crystallization was specified always based on preliminary measurements of ternary phase diagrams. Some of the examples were studied in the frame of the European project INTENANT (INTegrated synthesis and purification of single ENANTiomers), which attempted to combine the potential of the two rivaling general approaches, namely the development of a) enantioselective synthesis methods and b) physical methods aiming to separate efficiently mixtures of the two enantiomers. The attractive incorporation of racemizing the counter-enantiomer into process schemes will be finally also discussed. References [1] G. Coquerel, Preferential Crystallization in Novel Optical Resolution Technologies, N. Sakai, R. Hirayama, R. Tamura, Eds., Springer (Berlin, Heidelberg), 1-51, 2007. [2] L. Gou, S. Robl, K. Leonhard, H. Lorenz, M. Sordo, A. Butka, S. Kesselheim, M. Wolff, A. Seidel-Morgenstern, K. Schaber, A Hybrid Process for Chiral Separation of Compound Forming Systems, Chirality 23 (2011) 118-127. [3] H. Kaemmerer, Z. Horvath, J. W. Lee, M. Kaspereit, R. Arnell, M. Hedberg, B. Herschend, M. J. Jones, K. Larson, H. Lorenz, A. Seidel-Morgensten, Separation of Racemic Bicalutamide by an Optimized Combination of Continuous Chromatography and Selective Crystallization, Org. Process Res. Dev. 16 (2012) 331–342. [4] J. von Langermann, M. Kaspereit, M. Shakeri, H. Lorenz, M. Hedberg, M. J. Jones, K. Larson, B. Herschend, R. Arnell, E. Temmel, J.-E. Bäckvall, A. Kienle, A. Seidel-Morgenstern, Design of an Integrated Process of Chromatography, Crystallization and Racemization for the Resolution of 2′,6′-Pipecoloxylidide, Org. ProcessRes. Dev. 16 (2012) 343-352.

Details

show
hide
Language(s): eng - English
 Dates: 2012
 Publication Status: Not specified
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 610083
 Degree: -

Event

show
hide
Title: 2012 AIChE Annual Meeting
Place of Event: Pittsburgh, PA, USA
Start-/End Date: 2012-10-28 - 2012-11-02

Legal Case

show

Project information

show

Source

show