de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  On spin-(3/2) systems in Ricci flat space-times

Frauendiener, J. (1995). On spin-(3/2) systems in Ricci flat space-times. Journal of Mathematical Physics, 36(6), 3012-3022.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5B9C-5 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5B9D-3
Genre: Journal Article

Files

show Files
hide Files
:
329718.pdf (Preprint), 913KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Frauendiener, Jörg1, Author
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24012              

Content

show
hide
Free keywords: -
 Abstract: The Dirac formulation of massless spin-(3/2) fields is discussed. The existence and uniqueness for the solutions of the spin-(3/2) field equations in Dirac form is proven. It is shown that the system of equations can be split into a symmetric hyperbolic system of evolution equations and a set of constraint equations. The constraints are shown to propagate on a curved manifold if and only if it is an Einstein space. The gauge freedom present in the spin-(3/2) system is discussed and it is shown that the complete system ``solutions modulo gauge'' has a well posed Cauchy problem if and only if the Einstein equations hold.

Details

show
hide
Language(s): eng - English
 Dates: 1995-06
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 329718
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Mathematical Physics
  Alternative Title : J. Math. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 36 (6) Sequence Number: - Start / End Page: 3012 - 3022 Identifier: ISSN: 0022-2488