de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The Sugawara generators at arbitrary level

Gebert, R. W., Koepsell, K., & Nicolai, H. (1996). The Sugawara generators at arbitrary level. Retrieved from http://arxiv.org/abs/hep-th/9604155.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5B4A-0 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5B4B-E
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
9604155v1.pdf (Preprint), 264KB
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
eDoc_access: PUBLIC
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Gebert, Reinhold W.1, Autor
Koepsell, Kilian, Autor
Nicolai, Hermann2, Autor              
Affiliations:
1External Organizations, escidoc:persistent13              
2Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24014              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We construct an explicit representation of the Sugawara generators for arbitrary level in terms of the homogeneous Heisenberg subalgebra, which generalizes the well-known expression at level 1. This is achieved by employing a physical vertex operator realization of the affine algebra at arbitrary level, in contrast to the Frenkel--Kac--Segal construction which uses unphysical oscillators and is restricted to level 1. At higher level, the new operators are transcendental functions of DDF ``oscillators'' unlike the quadratic expressions for the level-1 generators. An essential new feature of our construction is the appearance, beyond level 1, of new types of poles in the operator product expansions in addition to the ones at coincident points, which entail (controllable) non-localities in our formulas. We demonstrate the utility of the new formalism by explicitly working out some higher-level examples. Our results have important implications for the problem of constructing explicit representations for higher-level root spaces of hyperbolic Kac--Moody algebras, and $E_{10}$ in particular.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 1996-04
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 341871
URI: http://arxiv.org/abs/hep-th/9604155
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: