de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Asymptotically hyperbolic non-constant mean curvature solutions of the Einstein constraint equations

Isenberg, J., & Park, J. (1997). Asymptotically hyperbolic non-constant mean curvature solutions of the Einstein constraint equations. Classical and Quantum Gravity, 14(1A), A189-A201. doi:10.1088/0264-9381/14/1A/016.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5AD1-4 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5AD2-2
Genre: Journal Article

Files

show Files
hide Files
:
330707.pdf (Publisher version), 114KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Isenberg, James, Author
Park, Jiseong1, Author
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24014              

Content

show
hide
Free keywords: -
 Abstract: We describe how the iterative technique used by Isenberg and Moncrief to verify the existence of large sets of non-constant mean curvature solutions of the Einstein constraints on closed manifolds can be adapted to verify the existence of large sets of asymptotically hyperbolic non-constant mean curvature solutions of the Einstein constraints.

Details

show
hide
Language(s):
 Dates: 1997-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 330707
DOI: 10.1088/0264-9381/14/1A/016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Classical and Quantum Gravity
  Alternative Title : Class. Quantum Grav.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 14 (1A) Sequence Number: - Start / End Page: A189 - A201 Identifier: ISSN: 0264-9381