de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  An affine string vertex operator construction at an arbitrary level

Gebert, R. W., & Nicolai, H. (1997). An affine string vertex operator construction at an arbitrary level. Journal of Mathematical Physics, 38(9), 4435-4450. doi:10.1063/1.532135.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5A82-5 Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5A83-3
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
328671.pdf (Verlagsversion), 209KB
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
eDoc_access: PUBLIC
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Gebert, Reinhold W.1, Autor
Nicolai, Hermann2, Autor              
Affiliations:
1External Organizations, escidoc:persistent13              
2Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24014              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: An affine vertex operator construction at an arbitrary level is presented which is based on a completely compactified chiral bosonic string whose momentum lattice is taken to be the (Minkowskian) affine weight lattice. This construction is manifestly physical in the sense of string theory, i.e., the vertex operators are functions of Del Giudice–Di Vecchia–Fubini (DFF) "oscillators" and the Lorentz generators, both of which commute with the Virasoro constraints. We therefore obtain explicit representations of affine highest weight modules in terms of physical (DDF) string states. This opens new perspectives on the representation theory of affine Kac–Moody algebras, especially in view of the simultaneous treatment of infinitely many affine highest weight representations of arbitrary level within a single state space as required for the study of hyperbolic Kac–Moody algebras. A novel interpretation of the affine Weyl group as the "dimensional null reduction" of the corresponding hyperbolic Weyl group is given, which follows upon re-expression of the affine Weyl translations as Lorentz boosts.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 1997-09
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 328671
ISI: A1997XW13200003
DOI: 10.1063/1.532135
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Mathematical Physics
  Alternativer Titel : J. Math. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 38 (9) Artikelnummer: - Start- / Endseite: 4435 - 4450 Identifikator: ISSN: 0022-2488