de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Second order gauge invariant gravitational perturbations of a Kerr black hole.

Campanelli, M., & Lousto, C. O. (1999). Second order gauge invariant gravitational perturbations of a Kerr black hole. Physical Review D, 59(12): 124022. doi:10.1103/PhysRevD.59.124022.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5834-7 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5835-5
Genre: Journal Article

Files

show Files
hide Files
:
9811019v2.pdf (Preprint), 287KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-
:
Phy.Rev.D.59.124022.pdf (Publisher version), 296KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Campanelli, Manuela1, Author
Lousto, Carlos O., Author
Affiliations:
1Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24013              

Content

show
hide
Free keywords: -
 Abstract: We investigate higher than the first order gravitational perturbations in the Newman-Penrose formalism. Equations for the Weyl scalar $\psi_4,$ representing outgoing gravitational radiation, can be uncoupled into a single wave equation to any perturbative order. For second order perturbations about a Kerr black hole, we prove the existence of a first and second order gauge (coordinates) and tetrad invariant waveform, $\psi_I$, by explicit construction. This waveform is formed by the second order piece of $\psi_4$ plus a term, quadratic in first order perturbations, chosen to make $\psi_I$ totally invariant and to have the appropriate behavior in an asymptotically flat gauge. $\psi_I$ fulfills a single wave equation of the form ${\cal T}\psi_I=S,$ where ${\cal T}$ is the same wave operator as for first order perturbations and $S$ is a source term build up out of (known to this level) first order perturbations. We discuss the issues of imposition of initial data to this equation, computation of the energy and momentum radiated and wave extraction for direct comparison with full numerical approaches to solve Einstein equations.

Details

show
hide
Language(s):
 Dates: 1999-06-15
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 206136
Other: arXiv:gr-qc/9811019v2
URI: http://link.aps.org/doi/10.1103/PhysRevD.59.124022
DOI: 10.1103/PhysRevD.59.124022
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review D
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 59 (12) Sequence Number: 124022 Start / End Page: - Identifier: ISSN: 0556-2821