de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Currents and Superpotentials in classical gauge theories: II. Global aspects and the example of Affine gravity

Julia, B., & Silva, S. (2000). Currents and Superpotentials in classical gauge theories: II. Global aspects and the example of Affine gravity. Classical and Quantum Gravity, 17, 4733-4744.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5779-6 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-577A-4
Genre: Journal Article

Files

show Files
hide Files
:
2804.pdf (Preprint), 201KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Julia, Bernard, Author
Silva, Sebastian1, Author
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24014              

Content

show
hide
Free keywords: -
 Abstract: The conserved charges associated with gauge symmetries are defined at a boundary component of spacetime because the corresponding Noether current can be rewritten on-shell as the divergence of a superpotential. However, the latter is afflicted by ambiguities. Regge and Teitelboim found a procedure to lift the arbitrariness in the Hamiltonian framework. An alternative covariant formula was proposed by one of us for an arbitrary variation of the superpotential, it depends only on the equations of motion and on the gauge symmetry under consideration. Here we emphasize that in order to compute the charges, it is enough to stay at a boundary of spacetime, without requiring any hypothesis about the bulk or about other boundary components, so one may speak of holographic charges. It is well known that the asymptotic symmetries that lead to conserved charges are really defined at infinity, but the choice of boundary conditions and surface terms in the action and in the charges is usually determined through integration by parts, whereas each component of the boundary should be considered separately. We treat the example of gravity (for any spacetime dimension, with or without cosmological constant), formulated as an affine theory which is a natural generalization of the Palatini and Cartan-Weyl (vielbein) first-order formulations. We then show that the superpotential associated with a Dirichlet boundary condition on the metric (the one needed to treat asymptotically flat or AdS spacetimes) is the one proposed by Katz et al and not that of Komar. We finally discuss the KBL superpotential at null infinity.

Details

show
hide
Language(s): eng - English
 Dates: 2000
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 2804
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Classical and Quantum Gravity
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 17 Sequence Number: - Start / End Page: 4733 - 4744 Identifier: -