de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Dynamically Triangulating Lorentzian Quantum Gravity

Ambjörn, J., Jurkiewicz, J., & Loll, R. (2001). Dynamically Triangulating Lorentzian Quantum Gravity. Nuclear Physics B, 610, 347-382.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5605-0 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-5606-E
Genre: Journal Article

Files

show Files
hide Files
:
2735.pdf (Preprint), 367KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Ambjörn, Jan, Author
Jurkiewicz, Jerzy, Author
Loll, Renate1, Author
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24014              

Content

show
hide
Free keywords: -
 Abstract: Fruitful ideas on how to quantize gravity are few and far between. In this paper, we give a complete description of a recently introduced non-perturbative gravitational path integral whose continuum limit has already been investigated extensively in d < 4, with promising results. It is based on a simplicial regularization of Lorentzian spacetimes and, most importantly, possesses a well-defined, non-perturbative Wick rotation. We present a detailed analysis of the geometric and mathematical properties of the discretized model in d = 3, 4. This includes a derivation of Lorentzian simplicial manifold constraints, the gravitational actions and their Wick rotation. We define a transfer matrix for the system and show that it leads to a well-defined self-adjoint Hamiltonian. In view of numerical simulations, we also suggest sets of Lorentzian Monte Carlo moves. We demonstrate that certain pathological phases found previously in Euclidean models of dynamical riangulations cannot be realized in the Lorentzian case. (C) 2001 Elsevier Science B.V. All rights reserved

Details

show
hide
Language(s): eng - English
 Dates: 2001
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 2735
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nuclear Physics B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 610 Sequence Number: - Start / End Page: 347 - 382 Identifier: -