de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  E10 and a Small Tension Expansion of M Theory

Damour, T., Henneaux, M., & Nicolai, H. (2002). E10 and a Small Tension Expansion of M Theory. Physical Review Letters, 89(22): 221601, pp. 1-4. doi:10.1103/PhysRevLett.89.221601.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-538D-B Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-538E-9
Genre: Journal Article

Files

show Files
hide Files
:
339645.pdf (Publisher version), 112KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Damour, Thibault, Author
Henneaux, Marc, Author
Nicolai, Hermann1, Author              
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24014              

Content

show
hide
Free keywords: -
 Abstract: A formal “small tension” expansion of D=11 supergravity near a spacelike singularity is shown to be equivalent, at least up to 30th order in height, to a null geodesic motion in the infinite-dimensional coset space E10/K(E10), where K(E10) is the maximal compact subgroup of the hyperbolic Kac-Moody group E10(R). For the proof we make use of a novel decomposition of E10 into irreducible representations of its SL(10,R) subgroup. We explicitly show how to identify the first four rungs of the E10 coset fields with the values of geometric quantities constructed from D=11 supergravity fields and their spatial gradients taken at some comoving spatial point.

Details

show
hide
Language(s):
 Dates: 2002-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 339645
DOI: 10.1103/PhysRevLett.89.221601
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review Letters
  Alternative Title : Phys. Rev. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 89 (22) Sequence Number: 221601 Start / End Page: 1 - 4 Identifier: ISSN: 0031-9007