English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Plane-wave Matrix Theory from N=4 Super Yang-Mills on RxS3

Kim, N., Klose, T., & Plefka, J. (2003). Plane-wave Matrix Theory from N=4 Super Yang-Mills on RxS3. Nuclear Physics B, 671(1-3), 359-382.

Item is

Files

show Files
hide Files
:
21477.pdf (Preprint), 297KB
Name:
21477.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Kim, Nakwoo1, Author
Klose, Thomas1, Author
Plefka, Jan1, Author
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Content

show
hide
Free keywords: -
 Abstract: Recently a mass deformation of the maximally supersymmetric Yang-Mills quantum mechanics has been constructed from the supermembrane action in eleven dimensional plane-wave backgrounds. However, the origin of this plane-wave matrix theory in terms of a compactification of a higher dimensional Super Yang-Mills model has remained obscure. In this paper we study the Kaluza-Klein reduction of D=4, N=4 Super Yang-Mills theory on a round three-sphere, and demonstrate that the plane-wave matrix theory arises through a consistent truncation to the lowest lying modes. We further explore the relation between the dilatation operator of the conformal field theory and the hamiltonian of the quantum mechanics through perturbative calculations up to two-loop order. In particular we find that the one-loop anomalous dimensions of pure scalar operators are completely captured by the plane-wave matrix theory. At two-loop level this property ceases to exis

Details

show
hide
Language(s): eng - English
 Dates: 2003
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 21477
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Nuclear Physics B
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 671 (1-3) Sequence Number: - Start / End Page: 359 - 382 Identifier: -