English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Robust vetoes for gravitational-wave burst triggers using known instrumental couplings

Ajith, P., Hewitson, M., Smith, J. R., & Strain, K. A. (2006). Robust vetoes for gravitational-wave burst triggers using known instrumental couplings. Classical and Quantum Gravity, 23, 5825-5837.

Item is

Files

show Files
hide Files
:
0605079.pdf (Preprint), 568KB
Name:
0605079.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Ajith, P.1, 2, 3, Author
Hewitson, Martin2, Author           
Smith, J. R.1, 2, 3, Author
Strain, K. A., Author
Affiliations:
1Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24010              
2Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24011              
3AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, ou_24009              

Content

show
hide
Free keywords: -
 Abstract: The search for signatures of transient, unmodelled gravitational-wave (GW) bursts in the data of ground-based interferometric detectors typically uses `excess-power' search methods. One of the most challenging problems in the burst-data-analysis is to distinguish between actual GW bursts and spurious noise transients that trigger the detection algorithms. In this paper, we present a unique and robust strategy to `veto' the instrumental glitches. This method makes use of the phenomenological understanding of the coupling of different detector sub-systems to the main detector output. The main idea behind this method is that the noise at the detector output (channel H) can be projected into two orthogonal directions in the Fourier space -- along, and orthogonal to, the direction in which the noise in an instrumental channel X would couple into H. If a noise transient in the detector output originates from channel X, it leaves the statistics of the noise-component of H orthogonal to X unchanged, which can be verified by a statistical hypothesis testing. This strategy is demonstrated by doing software injections in simulated Gaussian noise. We also formulate a less-rigorous, but computationally inexpensive alternative to the above method. Here, the parameters of the triggers in channel X are compared to the parameters of the triggers in channel H to see whether a trigger in channel H can be `explained' by a trigger in channel X and the measured transfer function.

Details

show
hide
Language(s):
 Dates: 2006
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 271919
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Classical and Quantum Gravity
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 23 Sequence Number: - Start / End Page: 5825 - 5837 Identifier: -