English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Unboundedness of triad-like operators in loop quantum gravity

Brunnemann, J., & Thiemann, T. (2006). Unboundedness of triad-like operators in loop quantum gravity. Classical and Quantum Gravity, 23(5), 1429-1483.

Item is

Files

show Files
hide Files
:
cqg6_5_001.pdf (Publisher version), 414KB
Name:
cqg6_5_001.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Brunnemann, Johannes1, Author
Thiemann, Thomas1, Author           
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, ou_24014              

Content

show
hide
Free keywords: -
 Abstract: Loop quantum cosmology (LQC), mainly due to Bojowald, is not the cosmological sector of loop quantum gravity (LQG). Rather, LQC consists of a truncation of the phase space of classical general relativity to spatially homogeneous situations which is then quantized by the methods of LQG. Thus, LQC is a quantum-mechanical toy model (finite number of degrees of freedom) for LQG (a genuine QFT with an infinite number of degrees of freedom) which provides important consistency checks. However, it is a non-trivial question whether the predictions of LQC are robust after switching on the inhomogeneous fluctuations present in full LQG. Two of the most spectacular findings of LQC are that: (1) the inverse scale factor is bounded from above on zero-volume eigenstates which hints at the avoidance of the local curvature singularity and (2) the quantum Einstein equations are non-singular which hints at the avoidance of the global initial singularity. This rests on (1) a key technique developed for LQG and (2) the fact that there are no inhomogeneous excitations. We display the result of a calculation for LQG which proves that the (analogon of the) inverse scale factor, while densely defined, is not bounded from above on zero-volume eigenstates. Thus, in full LQG, if curvature singularity avoidance is realized, then not in this simple way. In fact, it turns out that the boundedness of the inverse scale factor is neither necessary nor sufficient for the curvature singularity avoidance and that non-singular evolution equations are neither necessary nor sufficient for initial singularity avoidance because none of these criteria are formulated in terms of observable quantities. After outlining what would be required, we present the results of a calculation for LQG which could be a first indication that our criteria at least for curvature singularity avoidance are satisfied in LQG.

Details

show
hide
Language(s): eng - English
 Dates: 2006-03-07
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: eDoc: 297975
ISI: 000236755400002
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Classical and Quantum Gravity
  Alternative Title : Class. Quantum Gravity
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 23 (5) Sequence Number: - Start / End Page: 1429 - 1483 Identifier: ISSN: 0264-9381