de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Infinite-Dimensional Representations of 2-Groups

Baez, J. C., Baratin, A., Freidel, L., & Wise, D. K. (2012). Infinite-Dimensional Representations of 2-Groups. Memoirs of the American Mathematical Society, 219.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4728-E Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-472B-8
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
0812.4969v1.pdf (Preprint), 2MB
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
eDoc_access: PUBLIC
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Baez, John C., Autor
Baratin, Aristide1, Autor              
Freidel, Laurent, Autor
Wise, Derek K., Autor
Affiliations:
1Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24014              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: A "2-group" is a category equipped with a multiplication satisfying laws like those of a group. Just as groups have representations on vector spaces, 2-groups have representations on "2-vector spaces", which are categories analogous to vector spaces. Unfortunately, Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. For this reason, Crane, Sheppeard and Yetter introduced certain infinite-dimensional 2-vector spaces called "measurable categories" (since they are closely related to measurable fields of Hilbert spaces), and used these to study infinite-dimensional representations of certain Lie 2-groups. Here we continue this work. We begin with a detailed study of measurable categories. Then we give a geometrical description of the measurable representations, intertwiners and 2-intertwiners for any skeletal measurable 2-group. We study tensor products and direct sums for representations, and various concepts of subrepresentation. We describe direct sums of intertwiners, and sub-intertwiners--features not seen in ordinary group representation theory. We classify irreducible and indecomposable representations and intertwiners. We also classify "irretractable" representations--another feature not seen in ordinary group representation theory. Finally, we argue that measurable categories equipped with some extra structure deserve to be considered "separable 2-Hilbert spaces", and compare this idea to a tentative definition of 2-Hilbert spaces as representation categories of commutative von Neumann algebras.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 20082012
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: eDoc: 402674
arXiv: 0812.4969
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Memoirs of the American Mathematical Society
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 219 Artikelnummer: - Start- / Endseite: - Identifikator: -