de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Evolution of an extended Ricci flow system

List, B. (2008). Evolution of an extended Ricci flow system. Communications in Analysis and Geometry, 16(5), 1007-1048.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-46E6-C Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-46E7-A
Genre: Journal Article

Files

show Files
hide Files
:
CAG-16-5-A5-list.pdf (Any fulltext), 489KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
List, Bernhard1, Author
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24012              

Content

show
hide
Free keywords: -
 Abstract: We show that Hamilton's Ricci flow and the static Einstein vacuum equations are closely connected by the following system of geometric evolution equations: partial derivative(t)g = -2Rc(g) + 2 alpha(n)du circle times du, partial derivative(t)u = Delta(g)u, where g(t) is a Riemannian metric, u(t) a scalar function and an a constant depending only on the dimension n >= 3. This provides an interesting and useful link from problems in low-dimensional topology and geometry to physical questions in general relativity.

Details

show
hide
Language(s):
 Dates: 2008-12
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 407089
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Communications in Analysis and Geometry
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 16 (5) Sequence Number: - Start / End Page: 1007 - 1048 Identifier: ISSN: 1019-8385