de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory: study in terms of soliton methods

Ansorg, M., & Hennig, J. (2009). The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory: study in terms of soliton methods. Annales Henri Poincare, 10, 1075-1095. doi:10.1007/s00023-009-0012-0.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4610-C Version Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-4611-A
Genre: Journal Article

Files

show Files
hide Files
:
AnnHP10_09_1075.pdf (Publisher version), 316KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-
:
0904.2071v1.pdf (Preprint), 254KB
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
eDoc_access: PUBLIC
License:
-

Locators

show

Creators

show
hide
 Creators:
Ansorg, Marcus1, Author
Hennig, Jörg1, Author              
Affiliations:
1Geometric Analysis and Gravitation, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:24012              

Content

show
hide
Free keywords: -
 Abstract: We use soliton methods in order to investigate the interior electrovacuum region of axisymmetric and stationary, electrically charged black holes with arbitrary surrounding matter in Einstein-Maxwell theory. These methods can be applied since the Einstein-Maxwell vacuum equations permit the formulation in terms of the integrability condition of an associated linear matrix problem. We find that there always exists a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. Moreover, the soliton methods provide us with an explicit relation for the metric on the inner Cauchy horizon in terms of that on the event horizon. In addition, our analysis reveals the remarkable universal relation (8\pi J)2+(4\pi Q2)2=A+ A-, where A+ and A- denote the reas of event and inner Cauchy horizon respectively.

Details

show
hide
Language(s):
 Dates: 2009
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: eDoc: 429248
Other: arXiv:0904.2071
URI: http://arxiv.org/abs/0904.2071
DOI: 10.1007/s00023-009-0012-0
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Annales Henri Poincare
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 10 Sequence Number: - Start / End Page: 1075 - 1095 Identifier: -