de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The local potential approximation in quantum gravity

Benedetti, D., & Caravelli, F. (2012). The local potential approximation in quantum gravity. Journal of high energy physics: JHEP, 2012(6): 017. doi:10.1007/JHEP06(2012)017.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-000F-448C-A Versions-Permalink: http://hdl.handle.net/11858/00-001M-0000-000F-448F-4
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1204.3541v1.pdf (Preprint), 396KB
Datei-Permalink:
-
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
JHEP2012_017.pdf (beliebiger Volltext), 640KB
Datei-Permalink:
-
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Benedetti, D.1, Autor              
Caravelli, F., Autor
Affiliations:
1Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society, escidoc:67201              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Within the context of the functional renormalization group flow of gravity, we suggest that a generic f(R) ansatz (i.e. not truncated to any specific form, polynomial or not) for the effective action plays a role analogous to the local potential approximation (LPA) in scalar field theory. In the same spirit of the LPA, we derive and study an ordinary differential equation for f(R) to be satisfied by a fixed point of the renormalization group flow. As a first step in trying to assess the existence of global solutions (i.e. true fixed point) for such equation, we investigate here the properties of its solutions by a comparison of various series expansions and numerical integrations. In particular, we study the analyticity conditions required because of the presence of fixed singularities in the equation, and we develop an expansion of the solutions for large R up to order N=29. Studying the convergence of the fixed points of the truncated solutions with respect to N, we find a characteristic pattern for the location of the fixed points in the complex plane, with one point stemming out for its stability. Finally, we establish that if a non-Gaussian fixed point exists within the full f(R) approximation, it corresponds to an R^2 theory.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 20112012
 Publikationsstatus: Im Druck publiziert
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1204.3541
DOI: 10.1007/JHEP06(2012)017
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of high energy physics : JHEP
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bologna, Italy : Società italiana di fisica
Seiten: - Band / Heft: 2012 (6) Artikelnummer: 017 Start- / Endseite: - Identifikator: ISSN: 1126-6708
CoNE: http://pubman.mpdl.mpg.de/cone/journals/resource/111021927548002