English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Sequence-based exon prediction around the synaptophysin locus reveals a gene-rich area containing novel genes in human proximal Xp

Fisher, S. E., Ciccodicola, A., Tanaka, K., Curci, A., Desicato, S., D'urso, M., et al. (1997). Sequence-based exon prediction around the synaptophysin locus reveals a gene-rich area containing novel genes in human proximal Xp. Genomics, 45, 340-347. doi:10.1006/geno.1997.4941.

Item is

Files

show Files
hide Files
:
Fisher_Sequence-Based Exon Prediction_Genomics_1997.pdf (Publisher version), 262KB
Name:
Fisher_Sequence-Based Exon Prediction_Genomics_1997.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Fisher, Simon E.1, Author           
Ciccodicola, Alfredo, Author
Tanaka, Karo, Author
Curci, Anna, Author
Desicato, Sonia, Author
D'urso, Michele, Author
Craig, Ian W., Author
Affiliations:
1Genetics Laboratory, Department of Biochemistry, Oxford University, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The human Xp11.23-p11.22 interval has been implicated in several inherited diseases including Wiskott-Aldrich syndrome; three forms of X-linked hypercalciuric nephrolithiaisis; and the eye disorders retinitis pigmentosa 2, congenital stationary night blindness, and Aland Island eye disease. In constructing YAC contigs spanning Xp11. 23-p11.22, we have previously shown that the region around the synaptophysin (SYP) gene is refractory to cloning in YACs, but highly stable in cosmids. Preliminary analysis of the latter suggested that this might reflect a high density of coding sequences and we therefore undertook the complete sequencing of a SYP-containing cosmid. Sequence data were extensively analyzed using computer programs such as CENSOR (to mask repeats), BLAST (for homology searches), and GRAIL and GENE-ID (to predict exons). This revealed the presence of 29 putative exons, organized into three genes, in addition to the 7 exons of the complete SYP coding region, all mapping within a 44-kb interval. Two genes are novel, one (CACNA1F) showing high homology to alpha1 subunits of calcium channels, the other (LMO6) encoding a product with significant similarity to LIM-domain proteins. RT-PCR and Northern blot studies confirmed that these loci are indeed transcribed. The third locus is the previously described, but not previously localized, A4 differentiation-dependent gene. Given that the intron-exon boundaries predicted by the analysis are consistent with previous information where available, we have been able to suggest the genomic organization of the novel genes with some confidence. The region has an elevated GC content (>53%), and we identified CpG islands associated with the 5' ends of SYP, A4, and LMO6. The order of loci was Xpter-A4-LMO6-SYP-CACNA1F-Xcen, with intergenic distances ranging from approximately 300 bp to approximately 5 kb. The density of transcribed sequences in this area (>80%) is comparable to that found in the highly gene-rich chromosomal band Xq28. Further studies may aid our understanding of the long-range organization surrounding such gene-enriched regions.

Details

show
hide
Language(s): eng - English
 Dates: 1997
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1006/geno.1997.4941
PMID: 9344658
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Genomics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Diego, CA : Academic Press
Pages: - Volume / Issue: 45 Sequence Number: - Start / End Page: 340 - 347 Identifier: ISSN: 0888-7543
CoNE: https://pure.mpg.de/cone/journals/resource/954922649130