English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Magnetic field dependence of antiferromagnetic resonance in NiO

Wang, Z., Kovalev, S., Awari, N., Chen, M., Germanskiy, S., Green, B., et al. (2018). Magnetic field dependence of antiferromagnetic resonance in NiO. Applied Physics Letters, 112(25): 252404. doi:10.1063/1.5031213.

Item is

Files

show Files
hide Files
:
1806.07968.pdf (Preprint), 833KB
Name:
1806.07968.pdf
Description:
File downloaded from arXiv at 2018-06-26 10:15
OA-Status:
Green
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show

Creators

show
hide
 Creators:
Wang, Zhe1, Author
Kovalev, S.1, Author
Awari, N.1, 2, Author
Chen, Min1, Author
Germanskiy, S.1, Author
Green, B.1, Author
Deinert, J. -C.1, Author
Kampfrath, Tobias3, 4, Author           
Milano, J.5, 6, Author
Gensch, M.1, Author
Affiliations:
1Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany, ou_persistent22              
2Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, ou_persistent22              
3Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
4Department of Physics, Freie Universitt Berlin, Arnimallee 14, 14195 Berlin, Germany, ou_persistent22              
5CONICET-CNEA, Centro Atόmico Bariloche, (R8402AGP) San Carlos de Bariloche, Riό Negro, Argentina, ou_persistent22              
6Instituto Balseiro, Universidad Nacional de Cuyo, Centro Atomico Bariloche, (R8402AGP) San Carlos de Bariloche, Argentina, ou_persistent22              

Content

show
hide
Free keywords: Condensed Matter, Materials Science, cond-mat.mtrl-sci
 Abstract: We report on measurements of magnetic field and temperature dependence of antiferromagnetic resonances in the prototypical antiferromagnet NiO. The frequencies of the magnetic resonances in the vicinity of 1 THz have been determined in the time-domain via time-resolved Faraday measurements after selective excitation by narrow-band superradiant terahertz (THz) pulses at temperatures down to 3K and in magnetic fields up to 10 T. The measurements reveal two antiferromagnetic resonance modes, which can be distinguished by their characteristic magnetic field dependencies. The nature of the two modes is discussed by comparison to an eight-sublattice antiferromagnetic model, which includes superexchange between the next-nearest-neighbor Ni spins, magnetic dipolar interactions, cubic magneto-crystalline anisotropy, and Zeeman interaction with the external magnetic field. Our study indicates that a two-sublattice model is insufficient for the description of spin dynamics in NiO, while the magnetic-dipolar interactions and magneto-crystalline anisotropy play important roles.

Details

show
hide
Language(s): eng - English
 Dates: 2018-06-202018-062018-06-20
 Publication Status: Issued
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : TERAMAG - Ultrafast spin transport and magnetic order controlled by terahertz electromagnetic pulses
Grant ID : 681817
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

show
hide
Title: Applied Physics Letters
  Abbreviation : Appl. Phys. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Melville, NY : American Institute of Physics
Pages: 5 Volume / Issue: 112 (25) Sequence Number: 252404 Start / End Page: - Identifier: Other: 0003-6951
CoNE: https://pure.mpg.de/cone/journals/resource/954922836223