Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Performance of various density-functional approximations for cohesive properties of 64 bulk solids

Zhang, G.-X., Reilly, A., Tkatchenko, A., & Scheffler, M. (2018). Performance of various density-functional approximations for cohesive properties of 64 bulk solids. New Journal of Physics, 20: 063020. doi:10.1088/1367-2630/aac7f0.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Zhang_2018_New_J._Phys._20_063020.pdf (Verlagsversion), 2MB
Name:
Zhang_2018_New_J._Phys._20_063020.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2018
Copyright Info:
© The Author(s)
:
suppl-mater-NJP108118-R1.pdf (Ergänzendes Material), 180KB
Name:
suppl-mater-NJP108118-R1.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2018
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Zhang, Guo-Xu1, 2, Autor           
Reilly, Anthony2, 3, Autor           
Tkatchenko, Alexandre2, 4, Autor           
Scheffler, Matthias2, Autor           
Affiliations:
1School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin, Heilongjiang, CHINA, ou_persistent22              
2Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
3School of Chemical Sciences , Dublin City University, Dublin, IRELAND, ou_persistent22              
4Physics and Materials Science Research Unit, University of Luxembourg, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Accurate and careful benchmarking of different density-functional approximations (DFAs) represents an important source of information for understanding DFAs and how to improve them. In this work we have studied the lattice constants, cohesive energies, and bulk moduli of 64 solids using six functionals, representing the local, semi-local, and hybrid DFAs on the first four rungs of Jacob's ladder. The set of solids considered consists of ionic crystals, semiconductors, metals, and transition-metal carbides and nitrides. To minimize numerical errors and to avoid making further approximations, the full-potential, all-electron FHI-aims code has been employed, and all the reported cohesive properties include contributions from zero-point vibrations. Our assessment demonstrates that current DFAs can predict cohesive properties with mean absolute relative errors of 0.6% for the lattice constant and 6% for both the cohesive energy and the bulk modulus over the whole database of 64 solids. For semiconducting and insulating solids, the recently proposed SCAN meta-GGA functional represents a substantial improvement over the other functionals. However, when considering the different types of solids in the set, all of the employed functionals exhibit some variance in their performance. There are clear trends and relationships in the deviations of the cohesive properties, pointing to the need to consider, for example, long-range van der Waals (vdW) interactions. This point is also demonstrated by consistent improvements in predictions for cohesive properties of semiconductors when augmenting GGA and hybrid functionals with a screened Tkatchenko-Scheffler vdW energy term.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-05-062017-12-312018-05-252018-05-25
 Publikationsstatus: Online veröffentlicht
 Seiten: 19
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1088/1367-2630/aac7f0
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : BeStMo - Beyond Static Molecules: Modeling Quantum Fluctuations in Complex Molecular Environments
Grant ID : 725291
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: New Journal of Physics
  Kurztitel : New J. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol : IOP Publishing
Seiten: 19 Band / Heft: 20 Artikelnummer: 063020 Start- / Endseite: - Identifikator: ISSN: 1367-2630
CoNE: https://pure.mpg.de/cone/journals/resource/954926913666