Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  SchNet – A deep learning architecture for molecules and materials

Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A., & Müller, K.-R. (2018). SchNet – A deep learning architecture for molecules and materials. The Journal of Chemical Physics, 148(24): 241722. doi:10.1063/1.5019779.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schütt, K. T.1, Autor
Sauceda, Huziel E.2, Autor           
Kindermans, P.-J.1, Autor
Tkatchenko, Alexandre3, Autor           
Müller, Klaus-Robert1, 4, 5, Autor           
Affiliations:
1Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany, ou_persistent22              
2Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
3Physics and Materials Science Research Unit, University of Luxembourg, ou_persistent22              
4Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society, ou_40046              
5Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Deep learning has led to a paradigm shift in artificial intelligence, including web, text, and image search, speech recognition, as well as bioinformatics, with growing impact in chemical physics. Machine learning, in general, and deep learning, in particular, are ideally suitable for representing quantum-mechanical interactions, enabling us to model nonlinear potential-energy surfaces or enhancing the exploration of chemical compound space. Here we present the deep learning architecture SchNet that is specifically designed to model atomistic systems by making use of continuous-filter convolutional layers. We demonstrate the capabilities of SchNet by accurately predicting a range of properties across chemical space for molecules and materials, where our model learns chemically plausible embeddings of atom types across the periodic table. Finally, we employ SchNet to predict potential-energy surfaces and energy-conserving force fields for molecular dynamics simulations of small molecules and perform an exemplary study on the quantum-mechanical properties of C20-fullerene that would have been infeasible with regular ab initio molecular dynamics.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-12-162018-03-082018-03-292018-06-18
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.5019779
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : BeStMo - Beyond Static Molecules: Modeling Quantum Fluctuations in Complex Molecular Environments
Grant ID : 725291
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : ZERO-TRAIN-BCI - Combining constrained based learning and transfer learning to facilitate Zero-training Brain-Computer Interfacing
Grant ID : 657679
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
  Andere : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: 11 Band / Heft: 148 (24) Artikelnummer: 241722 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226