English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Competitive Molecular and Dissociative Hydrogen Chemisorption on Size Selected Doubly Rhodium Doped Aluminum Clusters

Vanbuel, J., Jia, M.-y., Ferrari, P., Gewinner, S., Schöllkopf, W., Nguyen, M. T., et al. (2018). Competitive Molecular and Dissociative Hydrogen Chemisorption on Size Selected Doubly Rhodium Doped Aluminum Clusters. Topics in Catalysis, 61(1), 62-70. doi:10.1007/s11244-017-0878-x.

Item is

Files

show Files
hide Files
:
Autorenfile_2017_H2_Rh2Alclusters_TopCatal.pdf (Any fulltext), 4MB
Name:
Autorenfile_2017_H2_Rh2Alclusters_TopCatal.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2017
Copyright Info:
Springer
License:
-

Locators

show

Creators

show
hide
 Creators:
Vanbuel, Jan1, Author
Jia, Mei-ye1, Author
Ferrari, Piero1, Author
Gewinner, Sandy2, Author           
Schöllkopf, Wieland2, Author           
Nguyen, Minh Tho3, Author
Fielicke, André2, 4, Author           
Janssens, Ewald1, Author
Affiliations:
1Laboratory of Solid State Physics & Magnetism, KU Leuven, Leuven, Belgium, ou_persistent22              
2Molecular Physics, Fritz Haber Institute, Max Planck Society, ou_634545              
3Department of Chemistry, KU Leuven, Leuven, Belgium, ou_persistent22              
4Institut für Optik und Atomare Physik, TU Berlin, Berlin, Germany, ou_persistent22              

Content

show
hide
Free keywords: Hydrogen storage; Metal clusters; Mass spectrometry; IR spectroscopy; Density functional theory calculations; Ion-molecule reactions
 Abstract: The interaction of hydrogen with AlnRh2+ (n = 10–13) clusters is studied by mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Comparing the IRMPD spectra with predictions obtained using density functional theory calculations allows for the identification of the hydrogen binding geometry. For n = 10 and 11, a single H2 molecule binds dissociatively, whereas for n = 12 and 13, it adsorbs molecularly. Upon adsorption of a second H2 to Al12Rh2+, both hydrogen molecules dissociate. Theoretical calculations suggest that the molecular adsorption for n = 12 and 13 is not due to kinetic impediment of the hydrogenation reaction by an activation barrier, but due to a higher binding energy of the molecularly adsorbed hydrogen–cluster complex. Inspection of the highest occupied molecular orbitals shows that the hydrogen molecule initially forms a strongly bound Kubas complex with the Al11-13Rh2+ clusters, whereas it only binds weakly with Al10Rh2+.

Details

show
hide
Language(s): eng - English
 Dates: 201720172017-11-282018-03
 Publication Status: Issued
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s11244-017-0878-x
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Topics in Catalysis
  Other : Top. Catal.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Springer
Pages: - Volume / Issue: 61 (1) Sequence Number: - Start / End Page: 62 - 70 Identifier: ISSN: 1022-5528
CoNE: https://pure.mpg.de/cone/journals/resource/954925584249