Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Unravelling Degradation Pathways of Oxide-Supported Pt Fuel Cell Nanocatalysts under In Situ Operating Conditions

Schmies, H., Bergmann, A., Drnec, J., Wang, G., Teschner, D., Kühl, S., et al. (2018). Unravelling Degradation Pathways of Oxide-Supported Pt Fuel Cell Nanocatalysts under In Situ Operating Conditions. Advanced Energy Materials, 8(4): 1701663. doi:10.1002/aenm.201701663.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2496267_AdvEnerMat_productiondata.pdf (beliebiger Volltext), 808KB
Name:
2496267_AdvEnerMat_productiondata.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
Wiley-VCH
Lizenz:
-
:
2496267_SI_productiondata.pdf (Ergänzendes Material), 780KB
Name:
2496267_SI_productiondata.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
Wiley-VCH
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schmies, Henrike1, Autor
Bergmann, Arno1, Autor
Drnec, Jakub2, Autor
Wang, Guanxiong3, Autor
Teschner, Detre4, 5, Autor           
Kühl, Stefanie1, Autor
Sandbeck, Daniel J. S.6, Autor
Cherevko, Serhiy6, Autor
Gocyla, Martin7, Autor
Shviro, Meital7, Autor
Heggen, Marc7, Autor
Ramani, Vijay3, Autor
Dunin-Borkowski, Rafal E.7, Autor
Mayrhofer, Karl J. J.6, Autor
Strasser, Peter1, Autor
Affiliations:
1Department of Chemistry Chemical Engineering Division Technical University of Berlin , 10623 Berlin, Germany, ou_persistent22              
2European Synchrotron Radiation Facility (ESRF), 38000 Grenoble, France, ou_persistent22              
3School of Engineering & Applied Science Washington University in St. Louis, 63130 St. Louis, MO, USA, ou_persistent22              
4Department of Heterogeneous Reactions Max-Planck-Institute for Chemical Energy Conversion , 45470 Mühlheim an der Ruhr, ou_persistent22              
5Inorganic Chemistry, Fritz Haber Institute, Max Planck Society, ou_24023              
6Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Forschungszentrum Jülich, 91058 Erlangen, Germany, ou_persistent22              
7Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Knowledge of degradation pathways of catalyst/support ensembles aids the development of rational strategies to improve their stability. Here, this is exemplified using indium tin oxide (ITO)-supported Platinum nanoparticles as electrocatalysts at fuel cell (FC) cathodes under degradation protocols to mimic operating conditions in two potential regimes. The evolution of crystal structure, composition, crystallite and particle size is tracked by in situ X-ray techniques (small and wide angle scattering), metal dissolution by in situ scanning flow cell coupled with mass spectrometry (SFC ICP-MS) and Pt surface morphology by advanced electron microscopy. In a regular FC operation regime, Pt poisoning rather than Pt particle growth, agglomeration, dissolution or detachment was found to be the likely origin of the observed degradation and ORR activity losses. In the start-up regime degradation is actually suppressed and only minor losses in catalytic activity are observed. The presented data thus highlight the excellent nanoparticle stabilization and corrosion resistance of the ITO support, yet point to a degradation pathway involving Pt surface modifications by deposition of sub-monolayers of support metal ions. The identified degradation pathway of the Pt/oxide catalyst/support couple contributes to our understanding of cathode electrocatalysts for polymer electrolyte fuel cells (PEFC).

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-08-042017-06-172017-112018-02-05
 Publikationsstatus: Online veröffentlicht
 Seiten: 13
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1002/aenm.201701663
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Energy Materials
  Kurztitel : Adv. Energy Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: 13 Band / Heft: 8 (4) Artikelnummer: 1701663 Start- / Endseite: - Identifikator: Anderer: 1614-6832
CoNE: https://pure.mpg.de/cone/journals/resource/1614-6832