Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature

Litman, Y., Donadio, D., Ceriotti, M., & Rossi, M. (2018). Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature. The Journal of Chemical Physics, 148(10): 102320. doi:10.1063/1.5002537.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1710.04876.pdf (Preprint), 6MB
Name:
1710.04876.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Litman, Yair1, Autor           
Donadio, Davide2, 3, Autor
Ceriotti, Michele4, Autor
Rossi, Mariana1, Autor           
Affiliations:
1Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
2Department of Chemistry, University of California Davis, One Shields Ave. Davis, CA, 95616, USA, ou_persistent22              
3IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain, ou_persistent22              
4Laboratory of Computational Science and Modelling, Ecole Polytechnique Federale de Lausanne, Switzerland, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Water molecules adsorbed on inorganic substrates play an important role in several technological applications. In the presence of light atoms in adsorbates, nuclear quantum effects (NQE) influence properties of these systems. In this work, we explore the impact of NQE on the dissociation of water wires on stepped Pt(221) surfaces. By performing ab initio molecular dynamics simulations with van der Waals corrected density functional theory, we note that several competing minima for both intact and dissociated structures are accessible at finite temperatures, making it important to assess whether harmonic estimates of the quantum free energy are sufficient to determine the relative stability of the different states. We perform ab initio path integral molecular dynamics (PIMD) in order to calculate these contributions taking into account conformational entropy and anharmonicities at finite temperatures. We propose that when when adsorption is weak and NQE on the substrate are negligible, PIMD simulations can be performed through a simple partition of the system, resulting in considerable computational savings. We calculate the contribution of NQE to the free energies, including anharmonic terms. We find that they result in an increase of up to 20% of the quantum contribution to the dissociation free energy compared to harmonic estimates. We also find that the dissociation has a negligible contribution from tunneling, but is dominated by ZPE, which can enhance the rate by three orders of magnitude. Finally we highlight how both temperature and NQE indirectly impact dipoles and the redistribution of electron density, causing work function to changes of up to 0.4 eV with respect to static estimates. This quantitative determination of the change in work function provides a possible approach to determine experimentally the most stable configurations of water oligomers on the stepped surfaces.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-10-132017-08-302017-10-312017-11-222018-03-14
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : HBMAP - Decoding, Mapping and Designing the Structural Complexity of Hydrogen-Bond Networks: from Water to Proteins to Polymers
Grant ID : 677013
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
  Andere : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: 11 Band / Heft: 148 (10) Artikelnummer: 102320 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226