Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Path Planning with Divergence-Based Distance Functions

Chen, R., Gotsman, C., & Hormann, K. (2017). Path Planning with Divergence-Based Distance Functions. Retrieved from http://arxiv.org/abs/1708.02845.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1708.02845.pdf (Preprint), 6MB
Name:
arXiv:1708.02845.pdf
Beschreibung:
File downloaded from arXiv at 2017-10-13 09:50
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chen, Renjie1, Autor           
Gotsman, Craig2, Autor
Hormann, Kai2, Autor
Affiliations:
1Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Robotics, cs.RO
 Zusammenfassung: Distance functions between points in a domain are sometimes used to automatically plan a gradient-descent path towards a given target point in the domain, avoiding obstacles that may be present. A key requirement from such distance functions is the absence of spurious local minima, which may foil such an approach, and this has led to the common use of harmonic potential functions. Based on the planar Laplace operator, the potential function guarantees the absence of spurious minima, but is well known to be slow to numerically compute and prone to numerical precision issues. To alleviate the first of these problems, we propose a family of novel divergence distances. These are based on f-divergence of the Poisson kernel of the domain. We define the divergence distances and compare them to the harmonic potential function and other related distance functions. Our first result is theoretical: We show that the family of divergence distances are equivalent to the harmonic potential function on simply-connected domains, namely generate paths which are identical to those generated by the potential function. The proof is based on the concept of conformal invariance. Our other results are more practical and relate to two special cases of divergence distances, one based on the Kullback-Leibler divergence and one based on the total variation divergence. We show that using divergence distances instead of the potential function and other distances has a significant computational advantage, as, following a pre-processing stage, they may be computed up to an order of magnitude faster than the others when taking advantage of certain sparsity properties of the Poisson kernel. Furthermore, the computation is "embarrassingly parallel", so may be implemented on a GPU with up to three orders of magnitude speedup.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-08-092017
 Publikationsstatus: Online veröffentlicht
 Seiten: 16 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1708.02845
URI: http://arxiv.org/abs/1708.02845
BibTex Citekey: chen_arXiv1708.02845
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: