English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Towards Holistic Machines: From Visual Recognition To Question Answering About Real-world Image

Malinowski, M. (2017). Towards Holistic Machines: From Visual Recognition To Question Answering About Real-world Image. PhD Thesis, Universität des Saarlandes, Saarbrücken.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Green
Locator:
http://scidok.sulb.uni-saarland.de/doku/lic_ohne_pod.php?la=de (Copyright transfer agreement)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Malinowski, Mateusz1, 2, Author           
Fritz, Mario1, Advisor           
Pinkal, Manfred3, Referee
Darrell, Trevor3, Referee
Affiliations:
1Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society, ou_1116547              
2International Max Planck Research School, MPI for Informatics, Max Planck Society, Campus E1 4, 66123 Saarbrücken, DE, ou_1116551              
3External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Computer Vision has undergone major changes over the recent five years. Here, we investigate if the performance of such architectures generalizes to more complex tasks that require a more holistic approach to scene comprehension. The presented work focuses on learning spatial and multi-modal representations, and the foundations of a Visual Turing Test, where the scene understanding is tested by a series of questions about its content. In our studies, we propose DAQUAR, the first ‘question answering about real-world images’ dataset together with methods, termed a symbolic-based and a neural-based visual question answering architectures, that address the problem. The symbolic-based method relies on a semantic parser, a database of visual facts, and a bayesian formulation that accounts for various interpretations of the visual scene. The neural-based method is an end-to-end architecture composed of a question encoder, image encoder, multimodal embedding, and answer decoder. This architecture has proven to be effective in capturing language-based biases. It also becomes the standard component of other visual question answering architectures. Along with the methods, we also investigate various evaluation metrics that embraces uncertainty in word's meaning, and various interpretations of the scene and the question.

Details

show
hide
Language(s): eng - English
 Dates: 2017-06-2020172017
 Publication Status: Issued
 Pages: 276 p.
 Publishing info: Saarbrücken : Universität des Saarlandes
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Malinowskiphd17
URN: urn:nbn:de:bsz:291-scidok-68978
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show