English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Finite Horizon Analysis of Markov Automata

Hatefi Ardakani, H. (2016). Finite Horizon Analysis of Markov Automata. PhD Thesis, Universität des Saarlandes, Saarbrücken.

Item is

Basic

show hide
Genre: Thesis
Latex : Finite Horizon Analysis of {M}arkov Automata

Files

show Files

Locators

show
hide
Description:
-
OA-Status:
Green
Locator:
http://scidok.sulb.uni-saarland.de/doku/lic_ohne_pod.php?la=de (Copyright transfer agreement)
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Hatefi Ardakani, Hassan1, 2, Author           
Hermanns, Holger3, Advisor
Buchholz, Peter3, Referee
Affiliations:
1Computer Graphics, MPI for Informatics, Max Planck Society, ou_40047              
2International Max Planck Research School, MPI for Informatics, Max Planck Society, Campus E1 4, 66123 Saarbrücken, DE, ou_1116551              
3External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Markov automata constitute an expressive continuous-time compositional modelling formalism, featuring stochastic timing and nondeterministic as well as probabilistic branching, all supported in one model. They span as special cases, the models of discrete and continuous-time Markov chains, as well as interactive Markov chains and probabilistic automata. Moreover, they might be equipped with reward and resource structures in order to be used for analysing quantitative aspects of systems, like performance metrics, energy consumption, repair and maintenance costs. Due to their expressive nature, they serve as semantic backbones of engineering frameworks, control applications and safety critical systems. The Architecture Analysis and Design Language (AADL), Dynamic Fault Trees (DFT) and Generalised Stochastic Petri Nets (GSPN) are just some examples. Their expressiveness thus far prevents them from efficient analysis by stochastic solvers and probabilistic model checkers. A major problem context of this thesis lies in their analysis under some budget constraints, i.e. when only a finite budget of resources can be spent by the model. We study mathematical foundations of Markov automata since these are essential for the analysis addressed in this thesis. This includes, in particular, understanding their measurability and establishing their probability measure. Furthermore, we address the analysis of Markov automata in the presence of both reward acquisition and resource consumption within a finite budget of resources. More specifically, we put the problem of computing the optimal expected resource-bounded reward in our focus. In our general setting, we support transient, instantaneous and final reward collection as well as transient resource consumption. Our general formulation of the problem encompasses in particular the optimal time-bound reward and reachability as well as resource-bounded reachability. We develop a sound theory together with a stable approximation scheme with a strict error bound to solve the problem in an efficient way. We report on an implementation of our approach in a supporting tool and also demonstrate its effectiveness and usability over an extensive collection of industrial and academic case studies.

Details

show
hide
Language(s): eng - English
 Dates: 2016-12-202017-01-112016
 Publication Status: Issued
 Pages: X, 175 p.
 Publishing info: Saarbrücken : Universität des Saarlandes
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Hatefiphd17
URN: urn:nbn:de:bsz:291-scidok-67438
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show