Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A Simple Near-Optimal Subdivision Algorithm for Complex Root Isolation based on the Pellet Test and Newton Iteration

Becker, R., Sagraloff, M., Sharma, V., & Yap, C. (2016). A Simple Near-Optimal Subdivision Algorithm for Complex Root Isolation based on the Pellet Test and Newton Iteration. Retrieved from http://arxiv.org/abs/1509.06231.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1509.06231.pdf (Preprint), 869KB
Name:
arXiv:1509.06231.pdf
Beschreibung:
File downloaded from arXiv at 2016-07-13 16:01
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Becker, Ruben1, Autor           
Sagraloff, Michael1, Autor           
Sharma, Vikram2, Autor           
Yap, Chee2, Autor           
Affiliations:
1Algorithms and Complexity, MPI for Informatics, Max Planck Society, ou_24019              
2External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Computer Science, Numerical Analysis, cs.NA,Computer Science, Symbolic Computation, cs.SC,Mathematics, Numerical Analysis, math.NA
 Zusammenfassung: We describe a subdivision algorithm for isolating the complex roots of a polynomial $F\in\mathbb{C}[x]$. Our model assumes that each coefficient of $F$ has an oracle to return an approximation to any absolute error bound. Given any box $\mathcal{B}$ in the complex plane containing only simple roots of $F$, our algorithm returns disjoint isolating disks for the roots in $\mathcal{B}$. Our complexity analysis bounds the absolute error to which the coefficients of $F$ have to be provided, the total number of iterations, and the overall bit complexity. This analysis shows that the complexity of our algorithm is controlled by the geometry of the roots in a near neighborhood of the input box $\mathcal{B}$, namely, the number of roots and their pairwise distances. The number of subdivision steps is near-optimal. For the \emph{benchmark problem}, namely, to isolate all the roots of an integer polynomial of degree $n$ with coefficients of bitsize less than $\tau$, our algorithm needs $\tilde{O}(n^3+n^2\tau)$ bit operations, which is comparable to the record bound of Pan (2002). It is the first time that such a bound has been achieved using subdivision methods, and independent of divide-and-conquer techniques such as Sch\"onhage's splitting circle technique. Our algorithm uses the quadtree construction of Weyl (1924) with two key ingredients: using Pellet's Theorem (1881) combined with Graeffe iteration, we derive a soft test to count the number of roots in a disk. Using Newton iteration combined with bisection, in a form inspired by the quadratic interval method from Abbot (2006), we achieve quadratic convergence towards root clusters. Relative to the divide-conquer algorithms, our algorithm is simple with the potential of being practical. This paper is self-contained: we provide pseudo-code for all subroutines used by our algorithm.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2015-09-212016-01-192016
 Publikationsstatus: Online veröffentlicht
 Seiten: 53 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1509.06231
URI: http://arxiv.org/abs/1509.06231
BibTex Citekey: BeckerarXiv2016
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: