English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Computational Prediction of MHC-Peptide Interaction

Siu, W.-I. (2005). Computational Prediction of MHC-Peptide Interaction. Master Thesis, Universität des Saarlandes, Saarbrücken.

Item is

Basic

show hide
Genre: Thesis
Latex : Computational Prediction of {MHC}-Peptide Interaction

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Siu, Weng-In1, 2, Author           
Antes, Iris1, Advisor           
Lengauer, Thomas1, Referee           
Affiliations:
1Computational Biology and Applied Algorithmics, MPI for Informatics, Max Planck Society, ou_40046              
2International Max Planck Research School, MPI for Informatics, Max Planck Society, Campus E1 4, 66123 Saarbrücken, DE, ou_1116551              

Content

show
hide
Free keywords: -
 Abstract: T-cell recognition is a critical step in regulating immune response. Activation of Cytotoxic T-cell requires the MHC class I molecules in complex with specific peptides and present them on the surface of the cell. Identification of potential ligands to MHC is therefore important for understanding disease pathogenesis and aiding vaccine design. Despite years of effort in the field, reliable prediction of MHC ligands remains a difficult task. It is reported that only one out of 100 to 200 potential binders actually binds. Methods based on sequence data alone are fast but fail to capture all binding patterns, while the structure based methods are more promising but far too slow for large-scale screening of protein sequences. In this work, we propose a new method to the prediction problem. It is based on the assumption that peptide binding is an aggregrate effect of contributions from independent binding of residues. Compatibility of each amino acid in the MHC binding pockets is examined thoroughly by molecular dynamics simulation. Values of energy terms important for binding are collected from the generated ensembles, and are used to produce the allele-specific scoring matrix. Each entry in this matrix represents the favorableness in terms of a particular "feature" of an amino acid in a binding position. Prediction models based on machine learning techniques are then trained to discriminate binders from non-binders. Our method is compared to two other sequence-based methods using HLA-A*0201 9-mer sequences. Three publicly available data sets are used: the MHCPEP, SYFPEITHI data sets, and the HXB2 genome. In overall, our method successfully improves the prediction accuracy with higher specificity. Its robustness to different sizes and ratios of training data proves its ability to provide reliable prediction by less dependency on the sequence data. The method also shows better generalizability in cross-allele predictions. For predicting peptide bound conformations, our preliminary approach based on energy minimization gives the satisfactory result of a backbone RMSD at 1.7 to 1.88 A as compared to the crystal structures.

Details

show
hide
Language(s): eng - English
 Dates: 2005-102005
 Publication Status: Issued
 Pages: -
 Publishing info: Saarbrücken : Universität des Saarlandes
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Siu2005
 Degree: Master

Event

show

Legal Case

show

Project information

show

Source

show