English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Predicting Component Failures at Early Design Time

Demir, M. (2006). Predicting Component Failures at Early Design Time. Master Thesis, Universität des Saarlandes, Saarbrücken.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Demir, Melih1, 2, Author           
Zeller, Andreas3, Advisor
Wilhelm, Reinhard3, Referee
Affiliations:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              
2International Max Planck Research School, MPI for Informatics, Max Planck Society, Campus E1 4, 66123 Saarbrücken, DE, ou_1116551              
3External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: For the effective prevention and elemination of defects and failures in a software system, it is important to know which parts of the software are mor likely to contain errors, and therefore, can be considered as "risky". To increase reliability and quality, more effort should be spent in risky components during design, implementation, and testing. Examining the version archive and the code of a large open-source project, we have investigated the relation between the risk of components as measured by post-release failures, and different code structures; such as method calls, variables, exception handling expressions and inheritnace statements. We have analyzed the different types of usage relations between components, and their affects on the failures. We utilized three commonly used statistical techniques to build failure prediction models. As a realistic opponent to our models, we introduced a "simple prediction model" which makes use of the riskiness information from the available components, rather than making random guesses. While the results from the classification experiments supported the use of code structures to predict failur-proneness, our regression analyses showed that the design time decisions also effected component riskiness. Our models were able to make precise predictions, with even only the knowledge of the inheritnace relations. since inheritance relations are defined aerliest at design time; based on the results of this study, we can say that it may be possible to initialize preventive actions against failures even early in the design phase of a project.

Details

show
hide
Language(s): eng - English
 Dates: 20062006
 Publication Status: Issued
 Pages: -
 Publishing info: Saarbrücken : Universität des Saarlandes
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: Demir2006
 Degree: Master

Event

show

Legal Case

show

Project information

show

Source

show