Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations

Schneider, C. J., Cuntz, H., & Soltesz, I. (2014). Linking macroscopic with microscopic neuroanatomy using synthetic neuronal populations. PLoS computational biology, 10(10), e1003921. doi:10.1371/journal.pcbi.1003921.

Item is

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://www.ncbi.nlm.nih.gov/pubmed/25340814 (beliebiger Volltext)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Schneider, C. J., Autor
Cuntz, H.1, Autor
Soltesz, I., Autor
Affiliations:
1Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Max Planck Society, Deutschordenstr. 46, 60528 Frankfurt, DE, ou_2074314              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Dendritic morphology has been shown to have a dramatic impact on neuronal function. However, population features such as the inherent variability in dendritic morphology between cells belonging to the same neuronal type are often overlooked when studying computation in neural networks. While detailed models for morphology and electrophysiology exist for many types of single neurons, the role of detailed single cell morphology in the population has not been studied quantitatively or computationally. Here we use the structural context of the neural tissue in which dendritic trees exist to drive their generation in silico. We synthesize the entire population of dentate gyrus granule cells, the most numerous cell type in the hippocampus, by growing their dendritic trees within their characteristic dendritic fields bounded by the realistic structural context of (1) the granule cell layer that contains all somata and (2) the molecular layer that contains the dendritic forest. This process enables branching statistics to be linked to larger scale neuroanatomical features. We find large differences in dendritic total length and individual path length measures as a function of location in the dentate gyrus and of somatic depth in the granule cell layer. We also predict the number of unique granule cell dendrites invading a given volume in the molecular layer. This work enables the complete population-level study of morphological properties and provides a framework to develop complex and realistic neural network models.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-10-24
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1371/journal.pcbi.1003921
ISSN: 1553-7358 (Electronic)1553-734X (Linking)
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS computational biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 10 (10) Artikelnummer: - Start- / Endseite: e1003921 Identifikator: -