Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Direct observation of electron propagation and dielectric screening on the atomic length scale

Neppl, S., Ernstorfer, R., Cavalieri, A. L., Lemell, C., Wachter, G., Magerl, E., et al. (2015). Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature, 517(7534), 342-346. doi:10.1038/nature14094.

Item is

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://dx.doi.org/10.1038/nature14094 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Neppl, S.1, Autor
Ernstorfer, R.1, Autor
Cavalieri, A. L.2, Autor           
Lemell, C.1, Autor
Wachter, G.1, Autor
Magerl, E.1, Autor
Bothschafter, E. M.1, Autor
Jobst, M.1, Autor
Hofstetter, M.1, Autor
Kleineberg, U.1, Autor
Barth, J. V.1, Autor
Menzel, D.1, Autor
Burgdorfer, J.1, Autor
Feulner, P.1, Autor
Krausz, F.1, Autor
Kienberger, R.1, Autor
Affiliations:
1external, ou_persistent22              
2Extreme Timescales, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_1938294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Electronic properties and materials
 Zusammenfassung: The propagation and transport of electrons in crystals is a fundamental process pertaining to the functioning of most electronic devices. Microscopic theories describe this phenomenon as being based on the motion of Bloch wave packets. These wave packets are superpositions of individual Bloch states with the group velocity determined by the dispersion of the electronic band structure near the central wavevector in momentum space. This concept has been verified experimentally in artificial superlattices by the observation of Bloch oscillations—periodic oscillations of electrons in real and momentum space. Here we present a direct observation of electron wave packet motion in a real-space and real-time experiment, on length and time scales shorter than the Bloch oscillation amplitude and period. We show that attosecond metrology (1 as = 10−18 seconds) now enables quantitative insight into weakly disturbed electron wave packet propagation on the atomic length scale without being hampered by scattering effects, which inevitably occur over macroscopic propagation length scales. We use sub-femtosecond (less than 10−15 seconds) extreme-ultraviolet light pulses to launch photoelectron wave packets inside a tungsten crystal that is covered by magnesium films of varied, well-defined thicknesses of a few ångströms. Probing the moment of arrival of the wave packets at the surface with attosecond precision reveals free-electron-like, ballistic propagation behaviour inside the magnesium adlayer—constituting the semi-classical limit of Bloch wave packet motion. Real-time access to electron transport through atomic layers and interfaces promises unprecedented insight into phenomena that may enable the scaling of electronic and photonic circuits to atomic dimensions. In addition, this experiment allows us to determine the penetration depth of electrical fields at optical frequencies at solid interfaces on the atomic scale.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2014-09-152014-11-142015-01-142015-01-15
 Publikationsstatus: Erschienen
 Seiten: 5
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/nature14094
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 517 (7534) Artikelnummer: - Start- / Endseite: 342 - 346 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238