English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Global Proteome Turnover Analyses of the Yeasts S-cerevisiae and S-pombe

Christiano, R., Nagaraj, N., Froehlich, F., & Walther, T. C. (2014). Global Proteome Turnover Analyses of the Yeasts S-cerevisiae and S-pombe. CELL REPORTS, 9(5), 1959-1965. doi:10.1016/j.celrep.2014.10.065.

Item is

Files

show Files
hide Files
:
1-s2.0-S2211124714009346-main.pdf (Any fulltext), 3MB
Name:
1-s2.0-S2211124714009346-main.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
open access article
License:
-

Locators

show

Creators

show
hide
 Creators:
Christiano, Romain1, Author
Nagaraj, Nagarjuna2, Author           
Froehlich, Florian1, Author
Walther, Tobias C.1, Author
Affiliations:
1external, ou_persistent22              
2Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society, ou_1565159              

Content

show
hide
Free keywords: GENE-EXPRESSION; HALF-LIVES; IN-VIVO; PROTEINS; QUANTIFICATION; STABILITY; DYNAMICS; SILAC; CELLS; LIFE
 Abstract: How cells maintain specific levels of each protein and whether that control is evolutionarily conserved are key questions. Here, we report proteome-wide steady-state protein turnover rate measurements for the evolutionarily distant but ecologically similar yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that the half-life of most proteins is much longer than currently thought and determined to a large degree by protein synthesis and dilution due to cell division. However, we detect a significant subset of proteins (similar to 15%) in both yeasts that are turned over rapidly. In addition, the relative abundances of orthologous proteins between the two yeasts are highly conserved across the 400 million years of evolution. In contrast, their respective turnover rates differ considerably. Our data provide a high-confidence resource for studying protein degradation in common yeast model systems.

Details

show
hide
Language(s): eng - English
 Dates: 2014
 Publication Status: Issued
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: CELL REPORTS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA : CELL PRESS
Pages: - Volume / Issue: 9 (5) Sequence Number: - Start / End Page: 1959 - 1965 Identifier: ISSN: 2211-1247