English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Global and regional impacts of HONO on the chemical composition of clouds and aerosols

Elshorbany, Y. F., Crutzen, P. J., Steil, B., Pozzer, A., Tost, H., & Lelieveld, J. (2014). Global and regional impacts of HONO on the chemical composition of clouds and aerosols. Atmospheric Chemistry and Physics, 14(3), 1167-1184. doi:10.5194/acp-14-1167-2014.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Elshorbany, Y. F.1, Author           
Crutzen, P. J.1, Author           
Steil, B.1, Author           
Pozzer, A.1, Author           
Tost, H.2, Author
Lelieveld, J.1, Author           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              
2external, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Recently, realistic simulation of nitrous acid (HONO) based on the HONO/NOx ratio of 0.02 was found to have a significant impact on the global budgets of HOx (OH+HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model-measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation.

Details

show
hide
Language(s):
 Dates: 2014
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000332384900003
DOI: 10.5194/acp-14-1167-2014
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 14 (3) Sequence Number: - Start / End Page: 1167 - 1184 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016