Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere

Cao, L., Sihler, H., Platt, U., & Gutheil, E. (2014). Numerical analysis of the chemical kinetic mechanisms of ozone depletion and halogen release in the polar troposphere. Atmospheric Chemistry and Physics, 14(7), 3771-3787. doi:10.5194/acp-14-3771-2014.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Cao, L.1, Autor
Sihler, H.2, Autor           
Platt, U.1, Autor
Gutheil, E.1, Autor
Affiliations:
1external, ou_persistent22              
2Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society, ou_1826293              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The role of halogen species (e. g., Br, Cl) in the troposphere of polar regions has been investigated since the discovery of their importance for boundary layer ozone destruction in the polar spring about 25 years ago. Halogen species take part in an auto-catalytic chemical reaction cycle, which releases Br-2 and BrCl from the sea salt aerosols, fresh sea ice or snowpack, leading to ozone depletion. In this study, three different chemical reaction schemes are investigated: a bromine-only reaction scheme, which then is subsequently extended to include nitrogen-containing compounds and chlorine species and corresponding chemical reactions. The importance of specific reactions and their rate constants is identified by a sensitivity analysis. The heterogeneous reaction rates are parameterized by considering the aerodynamic resistance, a reactive surface ratio, beta, i.e., the ratio of reactive surface area to total ground surface area, and the boundary layer height, L-mix. It is found that for beta = 1, a substantial ozone decrease occurs after five days and ozone depletion lasts for 40 h for L-mix = 200 m. For about beta >= 20, the time required for major ozone depletion ([O-3] < 4 ppb) to occur becomes independent of the height of the boundary layer, and for beta = 100 it approaches two days, 28 h of which are attributable to the induction and 20 h to the depletion time. In polar regions, a small amount of NOx may exist, which stems from nitrate contained in the snow, and may have a strong impact on the ozone depletion. Therefore, the role of nitrogen-containing species on the ozone depletion rate is studied. The results show that the NOx concentrations are influenced by different chemical reactions over different time periods. During ozone depletion, the reaction cycle involving the BrONO2 hydrolysis is dominant. A critical value of 0.0004 of the uptake coefficient of the BrONO2 hydrolysis reaction at the aerosol and saline surfaces is identified, beyond which the existence of NOx species accelerates the ozone depletion event, whereas for lower values, deceleration occurs.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2014
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000334608400034
DOI: 10.5194/acp-14-3771-2014
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Atmospheric Chemistry and Physics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Katlenburg-Lindau, Germany : European Geosciences Union
Seiten: - Band / Heft: 14 (7) Artikelnummer: - Start- / Endseite: 3771 - 3787 Identifikator: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016