Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound

Palasyuk, T., Troyan, I., Eremets, M., Drozd, V., Medvedev, S., Zaleski-Ejgierd, P., et al. (2014). Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound. Nature Communications, 5: 3460. doi:10.1038/ncomms4460.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Palasyuk, Taras1, Autor           
Troyan, Ivan1, Autor           
Eremets, Mikhail1, Autor           
Drozd, Vadym2, Autor
Medvedev, Sergey2, Autor
Zaleski-Ejgierd, Patryk2, Autor
Magos-Palasyuk, Ewelina2, Autor
Wang, Hongbo1, Autor           
Bonev, Stanimir A.2, Autor
Dudenko, Dmytro2, Autor
Naumov, Pavel2, Autor
Affiliations:
1Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826286              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Modern ab initio calculations predict ionic and superionic states in highly compressed water and ammonia. The prediction apparently contradicts state-of-the-art experimentally established phase diagrams overwhelmingly dominated by molecular phases. Here we present experimental evidence that the threshold pressure of similar to 120 GPa induces in molecular ammonia the process of autoionization to yet experimentally unknown ionic compound-ammonium amide. Our supplementary theoretical simulations provide valuable insight into the mechanism of autoionization showing no hydrogen bond symmetrization along the transformation path, a remarkably small energy barrier between competing phases and the impact of structural rearrangement contribution on the overall conversion rate. This discovery is bridging theory and experiment thus opening new possibilities for studying molecular interactions in hydrogen-bonded systems. Experimental knowledge on this novel ionic phase of ammonia also provides strong motivation for reconsideration of the theory of molecular ice layers formation and dynamics in giant gas planets.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2014-03
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000334300400043
DOI: 10.1038/ncomms4460
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 5 Artikelnummer: 3460 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723